自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 资源 (3)
  • 收藏
  • 关注

原创 UA PHYS515A 电磁理论V 电磁波与辐射9 简单辐射系统

UA PHYS515A 电磁理论V 电磁波与辐射8 简单辐射系统我们讨论了

2021-04-30 02:20:45 4

原创 UA PHYS515A 电磁理论V 电磁波与辐射8 单个粒子的辐射 匀速运动与匀加速运动的情况

UA PHYS515A 电磁理论V 电磁波与辐射8 单个粒子的辐射 匀速运动与匀加速运动的情况单个粒子的辐射场满足:E=q((n^−β⃗)(1−β⃗2)(1−n^⋅β⃗)3R2+n^×[n^−β⃗]×β⃗˙c(1−n^⋅β⃗)3R)t~B=n^×E\textbf E = q \left( \frac{(\hat n-\vec \beta)(1-\vec \beta^2)}{(1-\hat n \cdot \vec \beta)^3R^2}+\frac{\hat n \times [\hat n - \v

2021-04-29 03:43:51 200

原创 UA PHYS515A 电磁理论V 电磁波与辐射7 运动点电荷的辐射

UA PHYS515A 电磁理论V 电磁波与辐射7 运动点电荷的辐射实际问题中辐射的source都是比较复杂的charge density与currency density,但作为比较简单直观易于理解的模型,我们可以先学习point charge与point currency。用ro(t~)\textbf r_o(\tilde t)ro​(t~)表示point charge的位移,这里的ttt加了上标是为了强调这是retarded time,也就是source在过去某个时刻产生电磁波然后在未来某个时刻被我

2021-04-22 08:59:36 14

原创 UA PHYS515A 电磁理论V 电磁波与辐射6 波导

UA PHYS515A 电磁理论V 电磁波与辐射6 波导波导(wave guide)是用来定向引导电磁波的结构,它为我们研究边界条件对电磁波传播的影响提供了一个简单的模型。假设电磁波的形式为E=Ewe−iwt,B=Bwe−iwt\textbf E = \textbf E_w e^{-iwt},\textbf B = \textbf B_w e^{-iwt}E=Ew​e−iwt,B=Bw​e−iwt真空中的它适用的Maxwell方程为∇×Ew=iwcBw∇⋅Ew=0∇×Bw=iμϵwcEw∇⋅Bw=0

2021-04-21 11:28:31 4

原创 UA PHYS515A 电磁理论V 电磁波与辐射4 反射与折射

UA PHYS515A 电磁理论V 电磁波与辐射4 用麦克斯韦方程推导反射与折射定律

2021-04-21 03:08:58 64

原创 UA PHYS515A 电磁理论V 电磁波与辐射3 偏振

UA PHYS515A 电磁理论V 电磁波与辐射3 极化

2021-04-21 03:08:29 57

原创 Normal-Inverse Gamma Mixture简介

Normal-Inverse Gamma Mixture简介假设X∣γ∼N(μ,γ),γ∼IG(α,β)X|\gamma \sim N(\mu,\gamma),\gamma \sim IG(\alpha,\beta)X∣γ∼N(μ,γ),γ∼IG(α,β),称XXX的分布是Normal-Inverse Gamma Mixture,这个mixture在贝叶斯统计中有非常广泛的应用。应用一:正态方差的共轭分布先写出X,γX,\gammaX,γ的联合概率密度p(X,γ)∝(γ−1/2e−(X−μ)22γ)

2021-04-08 12:10:41 37

原创 Horseshoe prior的R package介绍:HS.normal.mean函数

Horseshoe prior的R package介绍:HS.normal.mean函数最近做的一些事情需要和Horseshoe prior对比,所以一直在看Horseshoe的一些资料。上周做了一点simulation发现Horseshoe在normal mean model上的表现还挺不错的,所以打算扒一下horseshoe这个包里面的HS.normal.means这个函数看看那几位搞Horseshoe的大牛是怎么写的。这里贴一个那个包的说明文本:https://cran.r-project.org/

2021-04-08 11:09:23 31

原创 UA PHYS515A 电磁理论V 电磁波与辐射5 电磁波在介质中的传播

UA PHYS515A 电磁理论V 电磁波与辐射5 电磁波在介质中的传播在介绍麦克斯韦方程的时候,我们提到过D⃗=E⃗+4πP⃗\vec D = \vec E + 4 \pi \vec PD=E+4πPP⃗\vec PP表示polarization vector,D⃗\vec DD是dielectric displacement vector,在各向同性线性介质中,D⃗=ϵE⃗\vec D = \epsilon \vec ED=ϵEϵ\epsilonϵ表示permittivity,是一个常数,现在

2021-04-08 05:57:39 6

原创 UA PHYS515A 电磁理论V 电磁波与辐射2 电磁波的能量

UA PHYS515A 电磁理论V 电磁波与辐射2 电磁波的能量在讨论电磁场的能量时,我们引入了Poynting矢量,为了描述波动,我们把电场与磁场描述为时空的复变函数,因此Poynting矢量也需要做一些修正:S⃗=c8πE⃗×H⃗∗\vec S = \frac{c}{8 \pi} \vec E \times \vec H^*S=8πc​E×H∗H⃗∗\vec H^*H∗表示mangetic field的共轭,这里用magnetic field而不是magnetic induction是因为避免在公

2021-04-03 08:38:23 23

原创 UA PHYS515A 电磁理论V 电磁波与辐射1 电磁波的方程

UA PHYS515A 电磁理论V 电磁波与辐射1 电磁波的方程这是春季学期的最后一章,从这一章开始我们研究电磁波的性质。春季学期四章分别介绍静电学问题、静磁学问题、运动的source产生电磁场、以及无source时电磁波的传播;秋季学期会引入侠义相对论为工具,研究电磁场与source的交替作用。在介质中,无源的电磁场满足下面的麦克斯韦方程:∇⋅E⃗=0∇⋅B⃗=0∇×E⃗+1c∂B⃗∂t=0∇×B⃗−μϵc∂E⃗∂t=0\nabla \cdot \vec{E} = 0\\ \nabla \cdot

2021-04-03 07:59:25 6

原创 UA PHYS515A 电磁理论IV 时变电磁场理论6 用含时Green函数求解时变电磁场问题的例子

UA PHYS515A 电磁理论IV 时变电磁场理论6 用含时Green函数求解时变电磁场问题的例子在一个nuclear中有一些photon,photon受激产生e−,e+e^-,e^+e−,e+两个electron,其中e−e^-e−沿k^\hat kk^方向运动,e+e^+e+沿−k^-\hat k−k^方向运动,速度大小记为vvv,现在我们试图计算这个过程激发的电磁场。回顾一下相关方程为:(∇2−1c2∂2∂t2)Φ=−4πρ(∇2−1c2∂2∂t2)A⃗=−4πcJ⃗\left( \nabla

2021-04-03 07:25:23 30

原创 UA PHYS515A 电磁理论IV 时变电磁场理论5 电磁场的角动量

UA PHYS515A 电磁理论IV 时变电磁场理论5 电磁场的角动量回顾一下angle momentum的定义L⃗=r⃗×p⃗\vec L= \vec r \times \vec pL=r×p​它关于时间的全微分为dL⃗dt=dr⃗dt×P⃗+r⃗×dP⃗dt=r⃗×dP⃗dt\frac{d \vec L}{dt} = \frac{d \vec r}{dt} \times \vec P+\vec r \times \frac{d \vec P}{dt} = \vec r \times \frac{

2021-04-03 06:41:21 22

原创 UA PHYS515A 电磁理论IV 时变电磁场理论4 电磁场的动量与麦克斯韦压缩能张量

UA PHYS515A 电磁理论IV 时变电磁场理论4 电磁场的动量与麦克斯韦压缩能张量我们可以回顾一下动量(momentum)的定义dP⃗dt=F⃗\frac{d \vec P}{dt}=\vec FdtdP​=F下面我们尝试导出电磁场的动量定理。在电磁场中,测试电荷受力为电场力叠加Lorentz力,所以dP⃗dt=F⃗=∫Vρ(E⃗+1cv⃗×B⃗)d3r⃗′\frac{d \vec P}{dt} = \vec F = \int_V \rho(\vec E + \frac{1}{c} \vec

2021-04-03 04:25:48 107

原创 UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒

UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒时变电磁场的传播成为电磁波,它可以携带能量,这一讲我们讨论电磁场的能量。回忆一下电荷守恒,麦克斯韦在推导他的方程组的时候,用电荷守恒修正了Ampere定律,他导出的微分形式的电荷守恒是∂ρ∂t+∇⋅J⃗=0\frac{\partial \rho}{\partial t}+\nabla \cdot \vec J = 0∂t∂ρ​+∇⋅J=0与电荷类似,在无外源的条件下,电磁场的能量也是一个守恒量,我们可以类似电荷守恒的思路导出电磁场

2021-04-03 02:27:35 72

原创 UA PHYS515A 电磁理论IV 时变电磁场理论2 Helmholtz方程与含时的Green函数

UA PHYS515A 电磁理论IV 时变电磁场理论2 Helmholtz方程与含时的Green函数上一讲的末尾我们介绍了Lorentz Gauge下的含时麦克斯韦方程:(∇2−1c2∂2∂t2)Φ=−4πρ(∇2−1c2∂2∂t2)A⃗=−4πcJ⃗\left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\Phi = -4 \pi \rho \\ \left( \nabla^2-\frac{1}{c^2}\frac{\

2021-04-02 13:24:44 12

原创 UA PHYS515A 电磁理论IV 时变电磁场理论1 含时的麦克斯韦方程

UA PHYS515A 电磁理论IV 时变电磁场理论1 含时的麦克斯韦方程前两个部分分别讨论静电学问题与静磁学问题的麦克斯韦方程以及适用的解法,实际上这两个部分是试图把电学现象与磁学现象拆分成两种独立的现象进行研究,这一部分我们来看怎么用麦克斯韦方程统一电磁现象。从Faraday定律开始:∇×E⃗=−1c∂B⃗∂t\nabla \times \vec{E}=-\frac{1}{c}\frac{\partial \vec{B}}{\partial t} ∇×E=−c1​∂t∂B​这是麦克斯韦方程组中

2021-04-02 11:58:23 26

Salary1.csv

UA MATH 571A R语言回归分析实践 一元回归部分的数据 需要的可以下载下来 自己练习一下R语言做回归的命令 虽然是挺简单的

2020-05-21

insurance.csv

UA MATH571A R语言回归分析实践 多元回归部分的数据 这个数据是introduction to machine learning讲线性回归的示例数据,虽然在github上也能找到,这里是统一了一下categorical variable的数值

2020-05-22

silicon.csv

UA MATH571A QE练习 R语言 单因子试验的ANOVA与回归分析的数据 原数据来自UA统计系的官网,也可以自行前往下载https://statistics.arizona.edu/sites/default/files/uagc_page/may_15_data_sets.xlsx

2020-07-16

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除