自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 资源 (3)
  • 收藏
  • 关注

原创 UA MATH567 高维统计 专题0 为什么需要高维统计理论?——理解稀疏向量与hard-threshold

UA MATH567 高维统计 专题0 为什么需要高维统计理论?——理解稀疏向量与hard-threshold稀疏向量的soft-threshold与hard-threshold近似引入hard-threshold的线性判别分析在上一篇的末尾,我们谈到了经典统计与高维统计的区别,在高维统计中,information is sparse in features,即并不是每个特征都是一样重要的,重要的特征占比非常小,这种特性被称为sparsity。不论是为了模型能处理高维问题还是为了提高计算效率,我们都需要去

2021-01-29 03:27:09 49 1

原创 UA STAT675 统计计算I 随机数生成2 线性递归模m与Multiple Recursive Generator (MRG)

UA STAT675 统计计算I 随机数生成2 线性递归模m

2021-01-29 03:06:12 42 1

原创 UA PHYS515 电磁理论I 麦克斯韦方程组基础4 介质中的麦克斯韦方程

UA PHYS515 电磁理论I 麦克斯韦方程组基础4 介质中的麦克斯韦方程推导介质中的麦克斯韦方程电位移矢量与辅助磁场强度推导介质中的麦克斯韦方程前三讲我们介绍了真空中的麦克斯韦方程的建立,这一讲我们讨论介质中的麦克斯韦方程。我们在真空中的分析聚焦于自由电荷与自由电荷流动,在引入介质后,除了自由电荷与自由电荷流动外,在介质中还存在介质自有电荷与潜在的电荷流动,因此ρ=ρfree+ρbondJ⃗=J⃗free+J⃗bond\rho = \rho_{free}+\rho_{bond} \\ \vec{J

2021-01-29 00:40:41 70

原创 UA STAT675 统计计算I 随机数生成1 随机数生成器的一般理论

UA STAT675 统计计算I 随机数生成1 随机数生成器的一般理论RNG的抽象表示RNG的质量指标RNG的统计检测在统计计算中,从某个分布中进行采样通常分为两个步骤:生成随机数z1,z2,⋯ ,zn∼iidU(0,1)z_1,z_2,\cdots,z_n \sim_{iid} U(0,1)z1​,z2​,⋯,zn​∼iid​U(0,1)基于z1,⋯ ,znz_1,\cdots,z_nz1​,⋯,zn​,根据某些变换或者某些操作(比如rejection\reweight等)得到服从该分布的随机数

2021-01-27 03:09:45 30

原创 UA PHYS515 电磁理论I 麦克斯韦方程组基础3 麦克斯韦方程的势能形式

UA PHYS515 电磁理论I 麦克斯韦方程组基础3 麦克斯韦方程的势能形式定义电磁场的potential改写Maxwell方程上一讲我们基于实验定律导出了真空中电磁场的Maxwell方程:∇⋅E⃗=4πρ∇⋅B⃗=0∇×E⃗=−∂B⃗∂t∇×B⃗=4πJ⃗+∂E⃗∂t\nabla \cdot \vec{E}=4\pi \rho \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial

2021-01-26 08:13:03 29

原创 UA PHYS515 电磁理论I 麦克斯韦方程组基础2 从实验定律到麦克斯韦方程

UA PHYS515 电磁理论I 麦克斯韦方程组基础2 从实验定律到麦克斯韦方程: Gauss定律电场强度的Gauss方程磁场强度的Gauss方程电场是保守力场电荷守恒上一讲介绍了两个重要的关于静电场与静磁场的重要定律,这一讲我们介绍从实验定律到Maxwell方程的总结过程。第一件要做的事情,就是请大家忘掉场论、向量分析相关的数学知识(散度、旋度、Gauss公式、Stokes公式等),因为物理学家相信自己的物理学直觉,基于physically meaningful definitions导出的公式如果正好

2021-01-26 07:22:54 84

原创 概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用上一讲我们介绍了Banach-Steinhaus定理:Banach-Steinhaus定理(uniform boundedness principle)假设XXX是一个Banach空间,{An}\{A_n\}{An​}是可列个XXX上的有界线性算子,∀x∈X\forall x \in X∀x∈X,sup⁡n≥1∥Anx∥\sup_{n \ge 1} \left\| A_nx \rig

2021-01-26 05:25:09 77 1

原创 概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire‘s Category与Banach-Steinhaus定理的证明

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire's Category与Banach-Steinhaus定理的证明Baire's Category TheoremBanach-Steinhaus定理(uniform boundedness principle)写在前面在随机微分方程那个系列中,我们在讨论Markov family的时候引入了Markov family的算子半群,这是一个在概率论与数理统计的理论中非常强大的分析工具。在随机分析中,算子半群可以用来分析

2021-01-25 05:14:01 134

原创 常微分方程I ODE的例子3 生态学模型:Malthus增长模型、Lotka-Volterra模型

常微分方程I ODE的例子3 生态学模型:Malthus增长模型、Lotka-Volterra模型在数学生态学中,建立常微分方程模型的思路主要就是:变化率=输入−输出变化率=输入-输出变化率=输入−输出例1 Malthus增长模型用x(t)x(t)x(t)表示population of a species at time t,则x˙=rx,r=b−d\dot{x}=rx,r=b-dx˙=rx,r=b−d其中bbb表示birth rate,ddd表示death rate,rrr表示intrinsi

2021-01-23 06:46:36 309

原创 常微分方程I ODE的例子1 弹簧的振动、RLC电路与单摆

常微分方程I ODE的例子1 例1 弹簧的振动考虑一端固定的弹力系数为kkk的弹簧连接质量为mmm在水平方向的振动,假设阻力与速度成正比,比例系数为ccc,外力为f(t)f(t)f(t),根据牛顿第二定律,mx¨=−cx˙−kx+f(t)m\ddot{x}=-c\dot{x}-kx+f(t)mx¨=−cx˙−kx+f(t)或者写为mx¨+cx˙+kx=f(t)m\ddot{x}+c\dot{x}+kx=f(t)mx¨+cx˙+kx=f(t)假设初始位置为x(0)=x0x(0)=x_0x(0)=x

2021-01-23 03:28:17 78

原创 UA MATH567 高维统计 专题0 为什么需要高维统计理论?——协方差估计的高维效应与Marcenko-Pastur规则

UA MATH567 高维统计 专题0 为什么需要高维统计理论?——线性判别中协方差估计的Marcenko-Pastur规则

2021-01-22 04:23:13 94

原创 R语言数据可视化 ggplot2基础4 位置与坐标系

R语言数据可视化 ggplot2基础4 位置与坐标系我们继续使用ggplot2::diamonds介绍position。position = “identity”ggplot(data=diamonds)+ geom_bar(mapping = aes(x = cut, fill = cut), position = "identity")另外,我们对每一个直方还可以根据另外的变量进行划分,比如用下面的代码,我们可以展示每一种净度在不同档次的切工中所占比率。ggplot(data=d

2021-01-22 03:16:10 415

原创 R语言数据可视化 ggplot2基础3 添加几何对象

R语言数据可视化 ggplot2基础3 添加几何对象 数据的统计变换添加几何对象数据的统计变换添加几何对象上一讲我们介绍的是如何创建散点图,这一讲我们介绍如何创建其他类型的图,以及怎么创建有多个几何对象的图。同样用用tidyverse自带的数据mpg举例,ggplot2::mpg在这个数据中,我们比较关注displ与hwy这两个变量,displ表示引擎尺寸(升),hwy表示高速路上的燃油效率(英里/加仑)。为了展示这两个变量之间的关系,我们可以尝试画一条平滑曲线,平滑方法用LOESSggplo

2021-01-22 02:24:47 71

原创 UA MATH567 高维统计 专题0 为什么需要高维统计理论?——以线性判别分析为例

UA MATH567 高维统计 专题0 多元统计方法在高维时会出什么问题?——以线性判别分析为例线性判别分析基础线性判别分析基础我们回顾一下二元假设检验问题,它的目标是判断某一个observation x∈Rdx \in \mathbb{R}^dx∈Rd到底属于总体P1P_1P1​还是P2P_2P2​,在统计理论中,Neyman-Pearson引理说明了似然比检验是最优检验,也就是基于log⁡P2(x)P1(x)\log \frac{P_2(x)}{P_1(x)}logP1​(x)P2​(x)​导出的检

2021-01-21 04:31:27 99

原创 UA MATH567 高维统计 专题1 Supervised PCA Regression概述

UA MATH567 高维统计 专题1 Supervised PCA Regression概述相关结果Supervised PCA Regression相关结果考虑经典的回归问题y=Xβ+ϵ,X∈Rp,ϵ∼N(0,σ2In)y=X\beta+\epsilon,X \in \mathbb{R}^p,\epsilon \sim N(0,\sigma^2I_n)y=Xβ+ϵ,X∈Rp,ϵ∼N(0,σ2In​),根据Gauss-Markov定理,在满足定理的假设时,OLS估计量具有非常好的渐近性质,但是当ppp

2021-01-21 02:45:45 72

原创 R语言数据可视化 ggplot2基础2 创建单图层的散点图 创建facet

R语言数据可视化 ggplot2基础2 创建单图层的散点图 创建facet单图层散点图单图层散点图的facet单图层散点图这一讲我们从最简单的散点图开始介绍ggplot2应用的基础,首先我们下载并应用tidyverse包:install.packages("tidyverse")library(tidyverse)用tidyverse自带的数据mpg举例,> ggplot2::mpg# A tibble: 234 x 11 manufacturer model displ ye

2021-01-20 02:38:57 109

原创 统计学习II.7 广义线性模型1 指数分布族

统计学习II.7 广义线性模型1 指数分布族指数分布族的定义指数分布族的例子Bernoulli分布Multinoulli分布一元正态分布指数分布族的性质指数分布族的MLE指数分布族的贝叶斯方法指数分布族的最大熵方法这一部分介绍广义线性模型,这是一类监督学习方法,通常用来构造分类器等。考虑{(Xi,Yi)}i=1N\{(X_i,Y_i)\}_{i=1}^N{(Xi​,Yi​)}i=1N​,广义线性模型通常假设YiY_iYi​服从某种指数分布族。因此这一部分先介绍指数分布族,然后介绍基于不同指数分布族导出的

2021-01-18 06:49:19 51

原创 偏微分方程I PDE的例子1 一维波动与热传导方程

偏微分方程I 一阶方程1 一阶PDE的简介与例子

2021-01-17 03:44:30 237

原创 UA MATH577 逻辑与可计算性1 递归函数

UA MATH577 逻辑与可计算性1 递归函数三种基础函数三类创造可计算的新函数的方法复合函数Primitive RecursiveMinimization写在前面这个系列是我上课的笔记,这个课是Jan Wehr老教授的Logic and Computation,用的教材是Boolos,Burgess,Jeffrey的Computability and Logic。Jan的研究领域是随机微分方程和数学物理,对具体的算法并不熟悉,再加上这是一个topic course,不是regular course,

2021-01-16 01:01:25 56

原创 R语言数据可视化 ggplot2基础1 ggplot2 图形的分层语法 Layered Grammar 简介

R语言数据可视化 ggplot2基础1 ggplot2 图形的分层语法 Layered Grammar 简介分层语法的组成(data-stat-geom-scale-coord-facet)用分层语法理解一段ggplot2代码Subplot 1Subplot 2ggplot2是tidyverse包的一部分,tidyverse是Hadley Wickham及其团队了为了能够系统性处理数据、图表开发的一个包。对我们统计人来说,尽管R语言提供了很多数据可视化的方法,但ggplot2依然是R语言做可视化的最优雅、

2021-01-15 05:10:52 149

原创 关于对数的有趣问题:lnx趋近于负无穷的速率与lnx趋近于正无穷的速率一样吗?对数的平方趋近于无穷的速率相当于x的几次方?

关于对数的有趣问题:lnx趋近于负无穷的速率与lnx趋近于正无穷的速率一样吗?对数的平方趋近于无穷的速率相当于x的几次方?在最近的科研中,我遇到了一个有趣又不是很容易的问题,我需要了解对数的平方趋近于无穷的速率、倒数的对数趋近于0的速率,以及对数的平方的倒数趋近于0的速率。这些问题看上去都很容易的样子,毕竟对数函数是我们从高中起就在接触的函数。但当我尝试思考这些问题并试图给出解答的时候,我发现我太天真了,包含(ln⁡x)2(\ln x)^2(lnx)2的函数要找一个多项式近似真的是不太容易。我先举个例

2021-01-15 02:15:29 448

原创 UA PHYS515 电磁理论I 麦克斯韦方程组基础1 库仑定律与毕奥-萨伐尔定律

UA PHYS515 电磁理论I 麦克斯韦方程组基础1 库仑定律与毕奥-萨伐尔定律Coulomb定律与电场Biot-Savart定律与磁场写在前面电磁理论是物理学中最优美的理论之一,因为它完备又精确,因此无论你是否正在学习物理,都应该来了解一下电磁理论,看看Maxwell方程,理解它为什么可以准确地描述电磁现象。这个系列的博客是俺笔记的翻译,是俺学校做宇宙理论的Fulvio Melia老教授的课,他有自己的电动力学的教材,就叫electrodynamics,他的课就是按他的教材来讲的。这个教材有八章,

2021-01-15 02:15:04 95

原创 UA MATH567 高维统计III 随机矩阵12 整数环上的区间的应用:DNA序列突变点侦测的统计量及假设检验

UA MATH567 高维统计III 随机矩阵12 整数环上的区间的应用:拐点侦测的统计量及假设检验整数环上的区间作为随机变量的下标最大值的概率不等式应用:拐点侦测整数环上的区间作为随机变量的下标最大值的概率不等式应用:拐点侦测...

2021-01-14 05:10:16 64

原创 生物学的现代统计方法与应用 第一讲 列联表1:验证Chargaff规则(碱基配对规则)

生物学的现代统计方法与应用 第一讲 列联表的应用1:验证Chargaff规则(碱基配对规则)问题描述:Chargaff规则验证Chargaff规则的统计量问题描述:Chargaff规则核苷酸(nucleotide)是核酸的基本组成单位,它以一个含氮碱基为核心,加上一个五碳糖和一个或者多个磷酸基团组成,下面的图是我从维基百科扒来的,感觉非常清晰。含氮碱基有五种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U)。五碳糖为脱氧核糖的称为脱氧核糖核苷酸,是DNA的单体基本组成单位;五

2021-01-13 04:07:10 163

原创 阶的估计I 无穷小量与强函数2 Taylor公式 基本初等函数与三角函数的阶

阶的估计I 无穷小量与强函数2 Taylor公式 基本初等函数与三角函数的阶这一讲介绍Taylor公式在阶的估计中的应用,并基于Taylor公式给出一些常用函数的阶的估计。定理1.2 Taylor公式在x0x_0x0​的某个领域内,如果f(x)f(x)f(x)的前nnn阶导存在,且f(n)(x)=O(1)f^{(n)}(x)=O(1)f(n)(x)=O(1),则f(x)=∑k=0n−1f(k)(x0)k!(x−x0)k+O(∣x−x0∣n)=∑k=0nf(k)(x0)k!(x−x0)k+o(∣x−

2021-01-10 05:18:37 37

原创 阶的估计I 无穷小量与强函数1 基本概念 无穷小量与强函数的运算法则

阶的估计I 无穷小量与强函数1 基本概念 无穷小量与强函数的运算法则写在前面阶的估计是一个大家从学数分/高数开始到未来研究工作中出现频率都会非常高的一个词语,特别是对于从事理论研究的工作者而言。结合我个人学习与研究经历来说,阶的估计就是尝试用毕生所学分析技巧去计算一个极限/积分/级数或者找它们的上下界的过程,并且这些极限/积分/级数看起来都非常不一般,比如我在科研中遇到过的:f(y)=∫yey22(1+u−2τ2)1u2+(uln⁡(u−2))2duf(y)=\int ye^{\frac{y^2}{2

2021-01-10 04:04:58 163

原创 稀疏数据分析:马蹄估计量及其理论性质

稀疏数据分析:马蹄估计量及其理论性质基本框架half-Cauchy分布为什么它叫马蹄估计量后验均值、shrinkage与κ\kappaκθ\thetaθ的边缘先验分布的阶马蹄估计的一致性收敛速率Clarke-Barron(1990)引理马蹄估计的最优收敛速率这是对The horseshoe estimator for sparse signal这篇论文的回顾,这篇论文在Modern Bayesian statistics与Bayesian Machine Learning领域比较重要,它提出了一种新的先验

2021-01-07 08:22:48 121

原创 UA MATH567 高维统计IV Lipschitz组合11 社区发现 Spectral Clustering容许的最大随机噪声

UA MATH567 高维统计IV Lipschitz组合11 社区发现算法容许的最大随机噪声我们在上一部分介绍随机矩阵的时候介绍了stochastic blocking model以及community detection的spectral clustering算法。假设这个网络有nnn个节点,网络中有两个社区,它们的规模相当,各拥有n/2n/2n/2个节点,记这两个社区为C1,C2C_1,C_2C1​,C2​,我们用G(n,p,q)G(n,p,q)G(n,p,q)表示这个随机网络,其中ppp表示某条

2021-01-05 07:37:32 29

原创 UA MATH567 高维统计IV Lipschitz组合10 随机矩阵的Bernstein不等式

UA MATH567 高维统计IV Lipschitz组合10 随机矩阵的Bernstein不等式

2021-01-05 06:59:00 34

原创 UA MATH567 高维统计IV Lipschitz组合9 矩阵函数、半正定序与迹不等式

UA MATH567 高维统计IV Lipschitz组合9 矩阵函数、半正定序与迹不等式矩阵函数半正定序(positive semi-definite order, PSD order)迹不等式这一讲的目标是提供一些矩阵分析的工具,因为下一讲我们要尝试导出随机矩阵的Bernstein不等式。矩阵函数假设XXX是对称矩阵,则XXX的所有特征值都是实数,我们可以写出XXX的谱分解为X=∑i=1nλiuiuiTX = \sum_{i=1}^n \lambda_i u_iu_i^TX=i=1∑n​λi​u

2021-01-05 06:12:39 58

原创 UA MATH567 高维统计IV Lipschitz组合8 随机投影与John-Lindenstrauss引理

UA MATH567 高维统计IV Lipschitz组合8 随机投影与John-Lindenstrauss引理这一讲我们介绍一个Lipschitz函数法处理随机向量的技术的应用。假设在一个机器学习问题中,我们有NNN个样本,每个样本有nnn个feature,但是nnn非常大,直接用这么多feature训练模型不但浪费算力而且影响模型精度,所以我们想做一个随机投影PPP,把这组nnn维的feature投影到一个mmm维的子空间,我们希望投影前后任意两个样本点的差别不会被放大或者缩小,用数学来描述就是假设x

2021-01-05 05:34:41 80 1

原创 UA MATH567 高维统计IV Lipschitz组合7 Grassman流形与Haar测度

UA MATH567 高维统计IV Lipschitz组合7 Grassman流形与Haar测度

2021-01-05 04:41:52 99 1

原创 UA MATH567 高维统计IV Lipschitz组合4 对称群上的均匀分布

UA MATH567 高维统计IV Lipschitz组合4 对称群上的均匀分布

2021-01-04 09:48:39 67

原创 UA MATH567 高维统计IV Lipschitz组合3 高斯分布的Lipschitz函数

UA MATH567 高维统计IV Lipschitz组合3 高斯分布的Lipschitz函数首先我们在欧氏空间(Rn,B(Rn))(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))(Rn,B(Rn))上建立高斯概率测度γn\gamma_nγn​,满足∀B∈B(Rn)\forall B \in \mathcal{B}(\mathbb{R}^n)∀B∈B(Rn),γn(B)=∫B1(2π)n/2e−∥x∥222dx\gamma_n(B) = \int_B \frac{1}{(

2021-01-04 07:48:43 43

原创 UA MATH567 高维统计IV Lipschitz组合2 Spherical Distribution的Lipschitz函数 Isoperimetric不等式

UA MATH567 高维统计IV Lipschitz组合2 Spherical Distribution的Lipschitz函数这一讲我们先介绍最简单的高维分布,也就是球面分布的Lipschitz函数的concentration。我们在上上部分随机向量第三讲介绍过这个分布,X∼Unif(nSn−1)X \sim Unif(\sqrt{n}S^{n-1})X∼Unif(n​Sn−1),其中Sn−1S^{n-1}Sn−1表示nnn维空间中的单位球面,这个符号说明XXX在半径在n\sqrt{n}n​的球面上

2021-01-04 07:21:40 87

原创 UA MATH567 高维统计IV Lipschitz组合1 Lipschitz函数

UA MATH567 高维统计IV Lipschitz组合1 Lipschitz函数高维统计的第二部分与第三部分分别讨论了基于亚高斯性导出的随机向量与随机矩阵的concentration inequality,这条推导路径需要独立性的假设;在第一部分的第十二讲我们介绍过McDiarmid不等式,它给出了比内积、范数更广义的Lipschitz组合的concentration inequality,尽管我们当时没有做深入讨论,使用Lipschitz的假设可以替换独立性的假设,进一步讨论随机向量与随机矩阵在没有

2021-01-03 09:26:51 59

原创 UA MATH567 高维统计III 随机矩阵10 亚高斯矩阵的应用:协方差估计与聚类问题的样本量需求计算

UA MATH567 高维统计III 随机矩阵10 亚高斯矩阵的应用:协方差估计与聚类的样本量如果XXX是零均值的随机变量,则Σ=EXXT\Sigma = EXX^TΣ=EXXT,假设{Xi}i=1m\{X_i\}_{i=1}^m{Xi​}i=1m​是XXX的一组样本,一种常用的协方差的估计是Σ^=1m∑i=1mXiXiT\hat \Sigma = \frac{1}{m}\sum_{i=1}^m X_iX^T_iΣ^=m1​i=1∑m​Xi​XiT​假设XXX的四阶矩有限,则根据弱大数定律,Σ^→L

2021-01-03 05:18:14 235 1

原创 UA MATH567 高维统计III 随机矩阵9 具有亚高斯行向量的亚高斯矩阵

UA MATH567 高维统计III 随机矩阵5 随机矩阵的奇异值上一讲我们讨论了随机矩阵的范数,范数其实是矩阵空间到实数的映射,与范数类似的矩阵空间到实数的映射还有奇异值,因此我们也可以研究随机矩阵的奇异值的尾部概率行为。假设AAA是一个m×nm \times nm×n的随机矩阵,它的每一行AiA_{i}Ai​是互相独立的零均值各向同性的亚高斯随机向量,关于它的奇异值有下面的结论随机矩阵的奇异值 K=max⁡i∥Ai∥ψ2K=\max_{i}\left\| A_{i} \right\|_{\psi_

2021-01-03 04:44:02 285

原创 UA MATH567 高维统计II 随机向量8 图的Max-cut问题 0.5近似算法的运行时间分析

UA MATH567 高维统计II 随机向量8 图的Max-cut问题 0.5近似算法的运行时间分析我们之前讨论了图的max-cut问题的0.5近似算法,也就是给定一张图,按掷硬币的概率决定是否切开一条边,这样的算法平均能切开一半的边:CUT(G,x)=12∑xixj=−1Aij=14∑i,jAij(1−xixj)=14∑i,jAij−14∑i,jAijxixjCUT(G,x)=\frac{1}{2}\sum_{x_ix_j=-1}A_{ij} = \frac{1}{4}\sum_{i,j}A_{ij}

2021-01-01 06:35:22 111 1

原创 UA MATH567 高维统计III 随机矩阵8 社区发现 Spectral Clustering的理论分析

UA MATH567 高维统计III 随机矩阵8 社区发现 Spectral Clustering的理论分析上一讲我们完成了Stochastic Block Model与社区发现问题的建模,并描述了目标:Community detection in networks的目标是给定一个某个随机矩阵的样本数据集,要还原随机矩阵的期望的特征向量。同时我们明确了算法分析的基本方法是摄动方法,这里描述一个大致思路:我们对社区发现算法进行理论分析的目的是说明这样的算法能够提供一个一致的、误差可以被控制的输出,也就是要

2021-01-01 06:20:00 131 1

Salary1.csv

UA MATH 571A R语言回归分析实践 一元回归部分的数据 需要的可以下载下来 自己练习一下R语言做回归的命令 虽然是挺简单的

2020-05-21

insurance.csv

UA MATH571A R语言回归分析实践 多元回归部分的数据 这个数据是introduction to machine learning讲线性回归的示例数据,虽然在github上也能找到,这里是统一了一下categorical variable的数值

2020-05-22

silicon.csv

UA MATH571A QE练习 R语言 单因子试验的ANOVA与回归分析的数据 原数据来自UA统计系的官网,也可以自行前往下载https://statistics.arizona.edu/sites/default/files/uagc_page/may_15_data_sets.xlsx

2020-07-16

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除