UA PHYS515A 电磁理论V 电磁波与辐射9 简单辐射系统

UA PHYS515A 电磁理论V 电磁波与辐射9 简单辐射系统

前文讨论了单个直线运动的带电粒子的辐射,但在实践中只有在实验室才能观察到这种现象,应用中遇到的情况会更加复杂,比如多个粒子做直线运动,多个粒子做圆周运动,多个粒子做运动的辐射传播路径上还有其他带电粒子影响辐射场等。这一讲我们就来讨论一下怎么处理这些更具有一般性的问题。

回顾一下在时变电磁场中讨论过的:在Lorentz gauge下
∇ ⋅ A + 1 c ∂ Φ ∂ t = 0 \nabla \cdot \textbf A + \frac{1}{c} \frac{\partial \Phi}{\partial t} = 0 A+c1tΦ=0

potential的通解为
A = 1 c ∫ J ( x ′ , t − ∣ x − x ′ ∣ c ) d 3 x ′ ∣ x − x ′ ∣ E = ∫ ρ ( x ′ , t − ∣ x − x ′ ∣ c ) d 3 x ′ ∣ x − x ′ ∣ \textbf A = \frac{1}{c} \int \frac{\textbf J(\textbf x',t-\frac{|\textbf x - \textbf x'|}{c})d^3 \textbf x'}{|\textbf x - \textbf x'|} \\ \textbf E = \int \frac{\rho(\textbf x',t-\frac{|\textbf x - \textbf x'|}{c})d^3 \textbf x'}{|\textbf x - \textbf x'|} A=c1xxJ(x,tcxx)d3xE=xxρ(x,tcxx)d3x

通过potential可以得到电磁场
E = − 1 c ∂ ∂ A − ∇ Φ B = ∇ × A = n ^ × E ∣ t ~ \textbf E = -\frac{1}{c}\frac{\partial}{\partial \textbf A}-\nabla \Phi \\ \textbf B = \nabla \times \textbf A = \hat n \times \textbf E|_{\tilde t} E=c1AΦB=×A=n^×Et~


为简化问题,我们假设所有的变量都是time harmonic,用 Γ \Gamma Γ表示一个物理量,即
Γ ( x , t ) = Γ w ( x ) e − i w t \Gamma(\textbf x, t) = \Gamma_w(\textbf x)e^{-iwt} Γ(x,t)=Γw(x)eiwt

w w w对所有涉及到的物理量都是相同的,因此所有物理量的fourier term e − i w t e^{-iwt} eiwt相同,我们可以用spatial term列方程。这样我们只需要记住四个处理简单辐射问题的最基本的方式就可以解决大部分作业题了:
∇ ⋅ A w − i k Φ w = 0 , k = w / c \nabla \cdot \textbf A_{w}-ik\Phi_w=0,k=w/c AwikΦw=0,k=w/c

在time harmonic时,
A = A w ( x ) e − i w t Φ = Φ w ( x ) e − i w t \textbf A = \textbf A_w(\textbf x)e^{-iwt} \\ \Phi = \Phi_w(\textbf x)e^{-iwt} A=Aw(x)eiwtΦ=Φw(x)eiwt

代入 ∇ ⋅ A + 1 c ∂ Φ ∂ t = 0 \nabla \cdot \textbf A + \frac{1}{c} \frac{\partial \Phi}{\partial t} = 0 A+c1tΦ=0中即可得到这个方程。

类似的,我们可以用time harmonic替换上文提到的其他几个式子:
A w = 1 c ∫ J w ( x ′ ) e i k ∣ x − x ′ ∣ ∣ x − x ′ ∣ d 3 x ′ E w = i k ∇ ( ∇ ⋅ A w ) + i k A w B w = ∇ × A w = n ^ × E \textbf A_w = \frac{1}{c}\int \textbf J_w(\textbf x') \frac{e^{ik|\textbf x - \textbf x'|}}{|\textbf x - \textbf x'|}d^3 \textbf x' \\ \textbf E_w = \frac{i}{k}\nabla(\nabla \cdot \textbf A_w)+ik\textbf A_w \\ \textbf B_w = \nabla \times \textbf A_w = \hat n \times \textbf E Aw=c1Jw(x)xxeikxxd3xEw=ki(Aw)+ikAwBw=×Aw=n^×E

在用以上几个式子解决实际问题时,我们需要根据具体情景写出对应的 J w \textbf J_w Jw,另外需要专门处理一下的是 e i k ∣ x − x ′ ∣ ∣ x − x ′ ∣ \frac{e^{ik|\textbf x - \textbf x'|}}{|\textbf x - \textbf x'|} xxeikxx这一项。假设观察者的位置在source以外,也就是假设 ∣ x ∣ > ∣ x ′ ∣ |\textbf x|>|\textbf x'| x>x,记 γ \gamma γ x \textbf x x x ′ \textbf x' x的夹角,则
k ∣ x − x ′ ∣ = k ∣ x ∣ 1 + ∣ x ′ ∣ 2 ∣ x ∣ 2 − 2 ∣ x ′ ∣ ∣ x ∣ cos ⁡ γ k|\textbf x - \textbf x'| = k|\textbf x|\sqrt{1+\frac{|\textbf x'|^2}{|\textbf x|^2}-2\frac{|\textbf x'|}{|\textbf x|}\cos \gamma} kxx=kx1+x2x22xxcosγ

用二项式定理展开且只保留前三项:
k ∣ x − x ′ ∣ ≈ k ∣ x ∣ [ 1 + 1 2 ( ∣ x ′ ∣ 2 ∣ x ∣ 2 − ∣ x ′ ∣ ∣ x ∣ cos ⁡ γ ) − 1 8 ( ∣ x ′ ∣ 2 ∣ x ∣ 2 − ∣ x ′ ∣ ∣ x ∣ cos ⁡ γ ) 2 ] k|\textbf x - \textbf x'| \approx k |\textbf x|\left[1+\frac{1}{2}\left( \frac{|\textbf x'|^2}{|\textbf x|^2}-\frac{|\textbf x'|}{|\textbf x|}\cos \gamma \right)-\frac{1}{8}\left( \frac{|\textbf x'|^2}{|\textbf x|^2}-\frac{|\textbf x'|}{|\textbf x|}\cos \gamma \right)^2 \right] kxxkx[1+21(x2x2xxcosγ)81(x2x2xxcosγ)2]

所以
e i k ∣ x − x ′ ∣ ≈ e i k ∣ x ∣ e i k ∣ x ′ ∣ 2 2 ∣ x ∣ − i k ∣ x ′ ∣ cos ⁡ γ e^{ik|\textbf x - \textbf x'|}\approx e^{ik|\textbf x|}e^{ik\frac{|\textbf x'|^2}{2|\textbf x|}-ik|\textbf x'|\cos \gamma} eikxxeikxeik2xx2ikxcosγ

我们考虑一种特殊情况, ∣ x ∣ > > ∣ x ′ ∣ |\textbf x|>>|\textbf x'| x>>x (in the radiation zone),此时
e i k ∣ x − x ′ ∣ ∣ x − x ′ ∣ ≈ e i k ∣ x ∣ ∣ x ∣ e − i k ∣ x ′ ∣ cos ⁡ γ \frac{e^{ik|\textbf x - \textbf x'|}}{|\textbf x - \textbf x'|}\approx \frac{e^{ik|\textbf x|}}{|\textbf x|}e^{-ik|\textbf x'|\cos \gamma} xxeikxxxeikxeikxcosγ

代入到向量势的表达式中
A w = e i k ∣ x ∣ ∣ x ∣ ∫ J w e − i k ∣ x ′ ∣ cos ⁡ γ d 3 x ′ ∇ ⋅ A w = ( − x ∣ x ∣ e i k ∣ x ∣ ∣ x ∣ 2 + i k e i k ∣ x ∣ ∣ x ∣ x ∣ x ∣ ) 1 c ∫ J w e − i k ∣ x ′ ∣ cos ⁡ γ d 3 x ′ \textbf A_w = \frac{e^{ik|\textbf x|}}{|\textbf x|}\int \textbf J_w e^{-ik|\textbf x'|\cos \gamma}d^3 \textbf x' \\ \nabla \cdot \textbf A_w = \left( - \frac{\textbf x}{|\textbf x|}\frac{e^{ik|\textbf x|}}{|\textbf x|^2}+\frac{ike^{ik|\textbf x|}}{|\textbf x|} \frac{\textbf x}{|\textbf x|}\right) \frac{1}{c} \int \textbf J_w e^{-ik|\textbf x'|\cos \gamma}d^3\textbf x' Aw=xeikxJweikxcosγd3xAw=(xxx2eikx+xikeikxxx)c1Jweikxcosγd3x

按理说这里也需要对 cos ⁡ γ \cos \gamma cosγ求导,但因为 ∣ x ∣ > > ∣ x ′ ∣ |\textbf x|>>|\textbf x'| x>>x,所以 cos ⁡ γ \cos \gamma cosγ的变化可以忽略不计。另外,我们把 1 / ∣ x ∣ 2 1/|\textbf x|^2 1/x2项也忽略,则
∇ ⋅ A w ≈ i k x ∣ x ∣ ⋅ A w \nabla \cdot \textbf A_w \approx \frac{ik \textbf x}{|\textbf x|}\cdot \textbf A_w AwxikxAw

基于这个近似:
∇ ( ∇ ⋅ A w ) ≈ i k x ∣ x ∣ ( ∇ ⋅ A w ) = ( i k ) 2 x ∣ x ∣ ( x ∣ x ∣ ⋅ A w ) \nabla(\nabla \cdot \textbf A_w) \approx \frac{ik \textbf x}{|\textbf x|}(\nabla \cdot \textbf A_w) = (ik)^2 \frac{ \textbf x}{|\textbf x|} \left( \frac{ \textbf x}{|\textbf x|}\cdot \textbf A_w \right) (Aw)xikx(Aw)=(ik)2xx(xxAw)

r ^ = x / ∣ x ∣ , r = ∣ x ∣ \hat r = \textbf x/|\textbf x|,r=|\textbf x | r^=x/x,r=x,则
E w = − i k [ r ^ ( r ^ ⋅ A w ) − A w ] = i k A w ⊥ \textbf E_w =- ik[\hat r (\hat r \cdot \textbf A_w)-\textbf A_w]=ik\textbf A^{\perp}_w Ew=ik[r^(r^Aw)Aw]=ikAw

A w \textbf A_w Aw按矢量的平行四边形法则分解, − [ r ^ ( r ^ ⋅ A w ) − A w ] - [\hat r (\hat r \cdot \textbf A_w)-\textbf A_w] [r^(r^Aw)Aw]是他在垂直于 r ^ \hat r r^方向的分量。

另外Poynting矢量可以表示为
S = c 8 π R e ( E w × B w ∗ ) = k 2 8 π c r 2 [ ∫ J w ⊥ ( x ′ ) e − i k ∣ x ′ ∣ cos ⁡ γ d 3 x ′ ] 2 r ^ \textbf S = \frac{c}{8 \pi}Re(\textbf E_w \times \textbf B^*_w) = \frac{k^2}{8 \pi cr^2}\left[ \int \textbf J_w^{\perp}(\textbf x')e^{-ik|\textbf x'|\cos \gamma}d^3 \textbf x' \right]^2 \hat r S=8πcRe(Ew×Bw)=8πcr2k2[Jw(x)eikxcosγd3x]2r^

相关推荐
<p> <b><span style="font-size:14px;"></span><span style="font-size:14px;background-color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font-size:14px;">1、68讲视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font-size:14px;">2、这门课程基于胡书敏老师8年Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font-size:14px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font-size:14px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font-size:14px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【超人气讲师】</b></span><br /> <span style="font-size:14px;">胡书敏 | 10年大厂工作经验,8年Java面试官经验,5年线下Java职业培训经验,5年架构师经验</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font-size:14px;">上课模式是什么?</span><br /> <span style="font-size:14px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font-size:14px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-size:14px;">移动端:<span style="font-family:Helvetica;font-size:14px;background-color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页