UA PHYS515A 电磁理论V 电磁波与辐射8 单个粒子的辐射 匀速运动与匀加速运动的情况

UA PHYS515A 电磁理论V 电磁波与辐射8 单个粒子的辐射 匀速运动与匀加速运动的情况

单个粒子的辐射场满足:
E = q ( ( n ^ − β ⃗ ) ( 1 − β ⃗ 2 ) ( 1 − n ^ ⋅ β ⃗ ) 3 R 2 + n ^ × [ n ^ − β ⃗ ] × β ⃗ ˙ c ( 1 − n ^ ⋅ β ⃗ ) 3 R ) t ~ B = n ^ × E \textbf E = q \left( \frac{(\hat n-\vec \beta)(1-\vec \beta^2)}{(1-\hat n \cdot \vec \beta)^3R^2}+\frac{\hat n \times [\hat n - \vec \beta] \times \dot{\vec \beta}}{c(1-\hat n \cdot \vec \beta)^3R}\right)_{\tilde t} \\ \textbf B = \hat n \times \textbf E E=q((1n^β )3R2(n^β )(1β 2)+c(1n^β )3Rn^×[n^β ]×β ˙)t~B=n^×E

第一项被称为velocity term或者Coulomb term,它只与速度有关且形式与库仑field的形式一致,并且当 β ⃗ → 0 \vec \beta \to 0 β 0,也就是点电荷运动速度相比光速可以忽略时,这一项退化为库仑field;如果点电荷的运动没有加速度,那么第二项为0;如果点电荷的运动存在加速度,第二项不为0,称其为radiation field;

匀速运动
某个带电粒子在 x ^ \hat x x^方向以 β ⃗ c \vec\beta c β c的速度匀速运动,运动之初的时刻为 t ~ \tilde t t~,此时观察者相对粒子的位移为 R ( t ~ ) \textbf R(\tilde t) R(t~),这个位移与wave vector的方向 k ^ ( t ~ ) \hat k(\tilde t) k^(t~)相同,与 x ^ \hat x x^的夹角为 α \alpha α;一段时间后,当前时刻为 t t t,此时观察者相对粒子的位移为 R ( t ) \textbf R(t) R(t),这个位移的方向也与粒子在当前位置放出的电磁波wave vector方向 k ^ ( t ) \hat k(t) k^(t)一致,与 x ^ \hat x x^的夹角为 θ \theta θ,粒子在这段时间的位移为 β ⃗ R ( t ~ ) \vec \beta R(\tilde t) β R(t~)

因为粒子运动不存在加速度,所以电场仅来源于库仑场
E = q ( n ^ − β ⃗ ) ( 1 − β ⃗ 2 ) ( 1 − n ^ ⋅ β ⃗ ) 3 R 2 ∣ t ~ \textbf E = q\frac{(\hat n-\vec \beta)(1-\vec \beta^2)}{(1-\hat n \cdot \vec \beta)^3R^2}|_{\tilde t} E=q(1n^β )3R2(n^β )(1β 2)t~

其中
n ^ − β ⃗ = R ( t ~ ) R ( t ~ ) − β ⃗ R ( t ~ ) R ( t ~ ) = 1 R ( t ~ ) ( R ( t ~ ) − β ⃗ R ( t ~ ) ) = R ( t ) R ( t ~ ) \hat n - \vec \beta = \frac{\textbf R(\tilde t)}{R(\tilde t)}-\vec \beta \frac{R(\tilde t)}{R(\tilde t)} = \frac{1}{R(\tilde t)}(\textbf R(\tilde t)-\vec\beta R(\tilde t))=\frac{\textbf R(t)}{R(\tilde t)} n^β =R(t~)R(t~)β R(t~)R(t~)=R(t~)1(R(t~)β R(t~))=R(t~)R(t)

这一项决定了匀速直线运动的带电粒子产生的电磁场的方向,令人惊讶的是当观察者观察到它产生的电磁场时,观察者会发现电磁场的方向是由当前带电粒子的位置而不是由被观测到的电磁场激发时带电粒子的位置决定的。一种比较直观的理解方式是电场线总是从粒子指向四面八方的,粒子运动时电场线的起点也在运动。
( 1 − n ^ ⋅ β ⃗ ) ∣ t ~ = 1 − β cos ⁡ α R ( t ~ ) ( 1 − n ^ ⋅ β ⃗ ) ∣ t ~ = R 2 ( t ) − β 2 R 2 ( t ~ ) sin ⁡ 2 α = R 2 ( t ) − β 2 R 2 ( t ) sin ⁡ 2 θ (1-\hat n \cdot \vec \beta)|_{\tilde t} = 1- \beta\cos \alpha \\ R(\tilde t) (1-\hat n \cdot \vec \beta)|_{\tilde t} =\sqrt{ R^2(t)-\beta^2R^2(\tilde t)\sin ^2 \alpha} \\ = \sqrt{R^2(t)-\beta^2R^2( t)\sin ^2 \theta} (1n^β )t~=1βcosαR(t~)(1n^β )t~=R2(t)β2R2(t~)sin2α =R2(t)β2R2(t)sin2θ

所以
E = q R ( t ) R ( t ~ ) ( 1 − β 2 ) R 2 ( t ~ ) R 3 ( t ~ ) ( R 2 ( t ) − β 2 R 2 ( t ) sin ⁡ 2 θ ) 3 / 2 = q R ( t ) ( 1 − β 2 ) R 3 ( t ) ( 1 − β 2 sin ⁡ 2 θ ) 3 / 2 \textbf E = q \frac{\textbf R(t)}{R(\tilde t)} \frac{(1-\beta^2)}{R^2(\tilde t)} \frac{R^3(\tilde t)}{(R^2(t)-\beta^2R^2( t)\sin ^2 \theta)^{3/2}} \\ = \frac{q\textbf R(t)(1-\beta^2)}{R^3(t)(1-\beta^2 \sin^2 \theta)^{3/2}} E=qR(t~)R(t)R2(t~)(1β2)(R2(t)β2R2(t)sin2θ)3/2R3(t~)=R3(t)(1β2sin2θ)3/2qR(t)(1β2)

简单观察这个式子我们就能知道,当观察者观察到运动粒子的电磁场时,这个被观察到的电磁场完全由这一时刻的粒子的性质所决定,并且此时场的形式已经不再是库仑场了(静止电荷的场),但如果 β → 0 \beta \to 0 β0,也就是粒子几乎静止,这时
E = q R ( t ) R 3 ( t ) \textbf E = \frac{q\textbf R(t)}{R^3(t)} E=R3(t)qR(t)

这与库仑定律一致。

匀加速运动

考虑与上例完全一致的设定,但假设 β ⃗ ˙ = a / c \dot{\vec \beta}=a/c β ˙=a/c为常数,并且 β < < 1 \beta<<1 β<<1
E = q ( n ^ × [ ( n ^ − β ⃗ ) × β ⃗ ˙ ] c ( 1 − n ^ ⋅ β ⃗ ) 3 R ) t ~ → q ( n ^ × ( n ^ × β ⃗ ˙ ) c R ) t ~ = q a c 2 sin ⁡ θ R θ ^ \textbf E = q \left(\frac{\hat n \times [(\hat n - \vec \beta)\times \dot{\vec \beta}]}{c(1-\hat n \cdot \vec \beta)^3R}\right)_{\tilde t} \\\to q \left(\frac{\hat n \times (\hat n \times \dot{\vec \beta})}{cR}\right)_{\tilde t}=\frac{qa}{c^2}\frac{\sin \theta}{R}\hat \theta E=q(c(1n^β )3Rn^×[(n^β )×β ˙])t~q(cRn^×(n^×β ˙))t~=c2qaRsinθθ^

Poyting vector的模为
∣ S ∣ = c 4 π ∣ E ∣ 2 = q 2 a 2 sin ⁡ 2 θ 4 π c 3 R 2 |\textbf S|= \frac{c}{4\pi}|\textbf E|^2 = \frac{q^2a^2 \sin^2 \theta}{4 \pi c^3R^2} S=4πcE2=4πc3R2q2a2sin2θ

这和我们熟悉的dipole的 ∣ S ∣ |\textbf S| S是一致的。

相关推荐
<p> <b><span style="font-size:14px;"></span><span style="font-size:14px;background-color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font-size:14px;">1、68讲视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font-size:14px;">2、这门课程基于胡书敏老师8年Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font-size:14px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font-size:14px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font-size:14px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【超人气讲师】</b></span><br /> <span style="font-size:14px;">胡书敏 | 10年大厂工作经验,8年Java面试官经验,5年线下Java职业培训经验,5年架构师经验</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font-size:14px;">上课模式是什么?</span><br /> <span style="font-size:14px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font-size:14px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-size:14px;">移动端:<span style="font-family:Helvetica;font-size:14px;background-color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页