UA PHYS515A 电磁理论V 电磁波与辐射7 运动点电荷的辐射

UA PHYS515A 电磁理论V 电磁波与辐射7 运动点电荷的辐射

实际问题中辐射的source都是比较复杂的charge density与currency density,但作为比较简单直观易于理解的模型,我们可以先学习point charge与point currency。用 r o ( t ~ ) \textbf r_o(\tilde t) ro(t~)表示point charge的位移,这里的 t t t加了上标是为了强调这是retarded time,也就是source在过去某个时刻产生电磁波然后在未来某个时刻被我们观察到。用 x \textbf x x表示观察者的位移,当观察者观察到电磁波时,point charge的位移为 r o ( t ) \textbf r_o(t) ro(t),用这个位移作为参考位移。

point charge的density为
ρ ( r ′ , t ′ ) = q δ ( r ′ − r o ( t ′ ) ) J ( r ′ , t ′ ) = q v δ ( r ′ − r o ( t ′ ) ) \rho(\textbf r',t')=q\delta(\textbf r'-\textbf r_o(t')) \\ \textbf J(\textbf r',t')=q\textbf v \delta(\textbf r'-\textbf r_o(t')) ρ(r,t)=qδ(rro(t))J(r,t)=qvδ(rro(t))

假设 ∣ v ∣ < < c |\textbf v|<<c v<<c,否则需要引入狭义相对论来完成推导,标量势与向量势满足
( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) A = − 4 π c J ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) Φ = − 4 π ρ (\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2})\textbf A = -\frac{4 \pi}{c} \textbf J \\ (\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}) \Phi = -4 \pi \rho (2c21t22)A=c4πJ(2c21t22)Φ=4πρ

用含时Green函数法写出potential的积分解
Φ ( x , t ) = ∬ ρ ( r ′ , t ′ ) δ ( t ′ − t + ∣ x − r ′ ∣ c ) ∣ x − r ′ ∣ d r ′ d t ′ = ∫ ρ ( r ′ , t − ∣ x − r ′ ∣ c ) ∣ x − r ′ ∣ d r ′ = q ∫ δ ( r ′ − r o ( t − ∣ x − r ′ ∣ c ) ) ∣ x − r ′ ∣ d r ′ A ( x , t ) = 1 c ∫ J ( r ′ , t − ∣ x − r ′ ∣ c ) ∣ x − r ′ ∣ d r ′ = q ∫ β ⃗ ( t − ∣ x − r ′ ∣ c ) δ ( r ′ − r o ( t − ∣ x − r ′ ∣ c ) ) ∣ x − r ′ ∣ d r ′ \Phi(\textbf x,t)= \iint \rho(\textbf r',t') \frac{\delta(t'-t+\frac{|\textbf x-\textbf r'|}{c})}{|\textbf x - \textbf r'|}d \textbf r' dt' \\= \int \frac{\rho(\textbf r',t-\frac{|\textbf x-\textbf r'|}{c})}{|\textbf x - \textbf r'|}d \textbf r' = q \int \frac{\delta(\textbf r'-\textbf r_o(t-\frac{|\textbf x - \textbf r'|}{c}))}{|\textbf x - \textbf r'|}d\textbf r' \\ \textbf A(\textbf x ,t)=\frac{1}{c}\int \frac{\textbf J (\textbf r',t-\frac{|\textbf x-\textbf r'|}{c})}{|\textbf x - \textbf r'|}d \textbf r' \\ =q \int \frac{\vec \beta(t-\frac{|\textbf x-\textbf r'|}{c})\delta(\textbf r'-\textbf r_o(t-\frac{|\textbf x - \textbf r'|}{c}))}{|\textbf x - \textbf r'|}d\textbf r' Φ(x,t)=ρ(r,t)xrδ(tt+cxr)drdt=xrρ(r,tcxr)dr=qxrδ(rro(tcxr))drA(x,t)=c1xrJ(r,tcxr)dr=qxrβ (tcxr)δ(rro(tcxr))dr

接下来就比较难搞了,因为Dirac函数的自变量是函数,所以需要引入一些关于Dirac函数的新的技巧来完成后续积分。

R = x − r ′ \textbf R=\textbf x - \textbf r' R=xr n ^ \hat n n^表示 R \textbf R R的方向,考虑 Φ \Phi Φ的表达式:
q ∫ δ ( r ′ − r o ( t − R c ) ) R d r ′ q \int \frac{\delta(\textbf r'-\textbf r_o(t-\frac{R}{c}))}{R}d\textbf r' qRδ(rro(tcR))dr

定义
r ∗ = r ′ − r o ( t − R c ) d r ∗ = [ 1 − n ^ ( t ~ ) ⋅ β ⃗ ( t ~ ) ] d 3 r ′ \textbf r^* = \textbf r'-\textbf r_o(t-\frac{R}{c}) \\ d \textbf r^* = [1-\hat n(\tilde t) \cdot \vec \beta(\tilde t)] d^3 \textbf r' r=rro(tcR)dr=[1n^(t~)β (t~)]d3r

变换积分变量,
Φ = q ∫ δ ( r ∗ ) d 3 r ∗ ∣ x − r ∗ − r 0 ( t ~ ) ∣ ( 1 − n ^ ⋅ β ⃗ ) = q ( 1 − n ^ ⋅ β ⃗ ) R ∣ t ~ \Phi = q \int \frac{\delta(\textbf r^*)d^3 \textbf r^*}{|\textbf x-\textbf r^*-\textbf r_0(\tilde t)|(1-\hat n \cdot \vec \beta)} = \frac{q}{(1-\hat n \cdot \vec \beta)R}|_{\tilde t} Φ=qxrr0(t~)(1n^β )δ(r)d3r=(1n^β )Rqt~

同样的方法可以得到
A = q β ⃗ ( 1 − n ^ ⋅ β ⃗ ) R ∣ t ~ \textbf A = \frac{q \vec \beta}{(1-\hat n \cdot \vec \beta)R }|_{\tilde t} A=(1n^β )Rqβ t~

称这两个解为Lienard-Wiechert potentials。知道了势之后可以写出电磁场
E = − ∇ Φ − 1 c ∂ ∂ t A B = ∇ × A \textbf E = -\nabla \Phi-\frac{1}{c}\frac{\partial}{\partial t} \textbf A \\ \textbf B = \nabla \times \textbf A E=Φc1tAB=×A

一种比较常用的计算方法是将势重新写为关于时间的积分形式
Φ ( x , t ) = q ∫ δ ( t ′ − t + R ( t ′ ) c ) R ( t ′ ) d t ′ A ( x , t ) = q ∫ β ⃗ ( t ′ ) δ ( t ′ − t + R ( t ′ ) c ) R ( t ′ ) d t ′ \Phi(\textbf x,t) = q\int \frac{\delta(t'-t+\frac{R(t')}{c})}{R(t')}dt' \\ \textbf A(\textbf x,t) = q\int \frac{\vec \beta(t')\delta(t'-t+\frac{R(t')}{c})}{R(t')}dt' Φ(x,t)=qR(t)δ(tt+cR(t))dtA(x,t)=qR(t)β (t)δ(tt+cR(t))dt

先引入一个关于Dirac函数的性质,其实就是对前面换元法的抽象:
∫ δ ( f ( x ) ) d x = ∫ δ ( f ( x ) ) d f d f / d x = 1 d f d x ∣ x = 0 \int \delta(f(x))dx = \int \delta(f(x)) \frac{df}{df/dx} = \frac{1}{\frac{df}{dx}|_{x=0}} δ(f(x))dx=δ(f(x))df/dxdf=dxdfx=01

如果
f ( t ′ ) = t ′ − t + R ( t ′ ) c f ′ ( t ′ ) ≈ 1 − 2 ( x − r ′ ) ⋅ r ′ ˙ 2 R c = 1 − n ^ ⋅ β ⃗ f(t')=t'-t+\frac{R(t')}{c} \\ f'(t')\approx 1-\frac{2(\textbf x- \textbf r')\cdot \dot{\textbf r'}}{2Rc} = 1-\hat n \cdot \vec \beta f(t)=tt+cR(t)f(t)12Rc2(xr)r˙=1n^β

这是对前文变量替换时多出来的contraction effect的解释。在这个积分形式下计算导数并带入电磁场的表达式(计算过程有点长,就省略了,有需要的话可以翻一下Jackson的书)
E = − q ∫ ∇ ( δ ( t ′ − t + R c ) R ) d t ′ − q c d d t ∫ β ⃗ δ ( t ′ − t + R c ) R d t ′ = q n ^ ( 1 − n ^ ⋅ β ⃗ ) R 2 ∣ t ~ + q c d d t n ^ − β ⃗ ( 1 − n ^ ⋅ β ⃗ ) R ∣ t ~ = q ( ( n ^ − β ⃗ ) ( 1 − β ⃗ 2 ) ( 1 − n ^ ⋅ β ⃗ ) R 2 + n ^ × [ n ^ − β ⃗ ] × β ⃗ ˙ c ( 1 − n ^ ⋅ β ⃗ ) 3 R ) t ~ \textbf E = -q \int \nabla \left( \frac{\delta(t'-t+\frac{R}{c})}{R} \right)dt' - \frac{q}{c} \frac{d}{dt} \int \frac{\vec \beta \delta(t'-t+\frac{R}{c})}{R}dt' \\ = q \frac{\hat n}{(1-\hat n \cdot \vec \beta)R^2}|_{\tilde t}+\frac{q}{c} \frac{d}{dt} \frac{\hat n - \vec \beta}{(1-\hat n \cdot \vec \beta)R}|_{\tilde t} \\ = q \left( \frac{(\hat n-\vec \beta)(1-\vec \beta^2)}{(1-\hat n \cdot \vec \beta)R^2}+\frac{\hat n \times [\hat n - \vec \beta] \times \dot{\vec \beta}}{c(1-\hat n \cdot \vec \beta)^3R}\right)_{\tilde t} E=q(Rδ(tt+cR))dtcqdtdRβ δ(tt+cR)dt=q(1n^β )R2n^t~+cqdtd(1n^β )Rn^β t~=q((1n^β )R2(n^β )(1β 2)+c(1n^β )3Rn^×[n^β ]×β ˙)t~

第一项被称为velocity term或者Coulomb term,它只与速度有关且形式与库仑field的形式一致,并且当 β ⃗ → 0 \vec \beta \to 0 β 0,也就是点电荷运动速度相比光速可以忽略时,这一项退化为库仑field;如果点电荷的运动没有加速度,那么第二项为0;如果点电荷的运动存在加速度,第二项不为0,称其为radiation field

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页