UA PHYS515A 电磁理论V 电磁波与辐射6 波导

UA PHYS515A 电磁理论V 电磁波与辐射6 波导

波导(wave guide)是用来定向引导电磁波的结构,它为我们研究边界条件对电磁波传播的影响提供了一个简单的模型。假设电磁波的形式为
E = E w e − i w t , B = B w e − i w t \textbf E = \textbf E_w e^{-iwt},\textbf B = \textbf B_w e^{-iwt} E=Eweiwt,B=Bweiwt

真空中的它适用的Maxwell方程为
∇ × E w = i w c B w ∇ ⋅ E w = 0 ∇ × B w = i μ ϵ w c E w ∇ ⋅ B w = 0 \nabla \times \textbf E_w = \frac{iw}{c} \textbf B_w \\ \nabla \cdot \textbf E_w = 0 \\ \nabla \times \textbf B_w = i \mu \epsilon \frac{w}{c}\textbf E_w \\ \nabla \cdot \textbf B_w = 0 ×Ew=ciwBwEw=0×Bw=iμϵcwEwBw=0

上面的方程可以改写为Helmholtz方程:
( ∇ 2 + w 2 c 2 ) E = 0 ( ∇ 2 + w 2 c 2 ) B = 0 (\nabla^2+\frac{w^2}{c^2}) \textbf E = 0 \\ (\nabla^2 + \frac{w^2}{c^2}) \textbf B = 0 (2+c2w2)E=0(2+c2w2)B=0


假设介质是一个截面形状任意的柱状体,则电场可以表示为
E w = E w t ( x , y ) e i k g z \textbf E_w = \textbf E_{wt}(x,y)e^{ik_gz} Ew=Ewt(x,y)eikgz

第一项限制电磁波在截面内的形状;第二项表示电磁波在 z z z轴方向的传播;假设磁场也可以类似表示;则Helmholtz方程可以写成:
( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) E w t ( x , y ) = 0 ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) E w t ( x , y ) = 0 (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) \textbf E_{wt}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) \textbf E_{wt}(x,y)=0 (x22+y22+c2w2kg2)Ewt(x,y)=0(x22+y22+c2w2kg2)Ewt(x,y)=0

我们可以先不急着解这个二阶的PDE,先回顾一下一阶的方程:
∇ × E w = i w c B w \nabla \times \textbf E_w = \frac{iw}{c} \textbf B_w ×Ew=ciwBw

x x x方向的分量为
∂ ∂ y E w t z − i k g E w t y = i w c B w t x \frac{\partial}{\partial y}E_{wtz}-ik_gE_{wty} = i\frac{w}{c}B_{wtx} yEwtzikgEwty=icwBwtx

再考虑Ampere定律 ∇ × B w = − i w c E w \nabla \times \textbf B_w = -\frac{iw}{c}\textbf E_w ×Bw=ciwEw

y y y方向的分量为
− ∂ ∂ x B w t z + i k g B w t x = − i w c E w t y -\frac{\partial}{\partial x}B_{wtz}+ik_gB_{wtx} =- i\frac{w}{c}E_{wty} xBwtz+ikgBwtx=icwEwty

联合上面两个分量形式的方程,消去 E w t y E_{wty} Ewty
B w t x = − i ( w c ) 2 − k g 2 ( w c ∂ E w t z ∂ y − k g ∂ B w t z ∂ x ) B_{wtx} = -\frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial E_{wtz}}{\partial y}-k_g \frac{\partial B_{wtz}}{\partial x} \right) Bwtx=(cw)2kg2i(cwyEwtzkgxBwtz)

同理可以得到另外的分量:

B w t y = i ( w c ) 2 − k g 2 ( w c ∂ E w t z ∂ x + k g ∂ B w t z ∂ y ) E w t x = i ( w c ) 2 − k g 2 ( w c ∂ B w t z ∂ y + k g ∂ E w t z ∂ x ) E w t y = − i ( w c ) 2 − k g 2 ( w c ∂ B w t z ∂ x − k g ∂ E w t z ∂ y ) B_{wty} = \frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial E_{wtz}}{\partial x}+k_g \frac{\partial B_{wtz}}{\partial y} \right) \\ E_{wtx} = \frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial B_{wtz}}{\partial y}+k_g \frac{\partial E_{wtz}}{\partial x} \right) \\ E_{wty} = -\frac{i}{(\frac{w}{c})^2-k_g^2}\left( \frac{w}{c} \frac{\partial B_{wtz}}{\partial x}-k_g \frac{\partial E_{wtz}}{\partial y} \right) Bwty=(cw)2kg2i(cwxEwtz+kgyBwtz)Ewtx=(cw)2kg2i(cwyBwtz+kgxEwtz)Ewty=(cw)2kg2i(cwxBwtzkgyEwtz)

由此可见,只要我们能解出 z z z方向的分量,我们就可以得到电磁波的方程了。在实践中有三种特殊情况:

  1. transverse electric ( E w t z = 0 E_{wtz}=0 Ewtz=0) 横电波或TE模
  2. transverse magnetic ( B w t z = 0 B_{wtz}=0 Bwtz=0) 横磁波或TM模
  3. transverse electromagnetic 横电磁波或TEM模

这三种是电磁波在传输线中常见的三种模式。但即使在一般情况中,我们也只需要求解
( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) E w t z ( x , y ) = 0 ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) B w t z ( x , y ) = 0 (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) E_{wtz}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) B_{wtz}(x,y)=0 (x22+y22+c2w2kg2)Ewtz(x,y)=0(x22+y22+c2w2kg2)Bwtz(x,y)=0

例 矩形传输线
假设导线截面为 { ( x , y , z ) : 0 ≤ x ≤ a , 0 ≤ y ≤ b } \{(x,y,z):0 \le x \le a,0 \le y \le b\} {(x,y,z):0xa,0yb},则导线边界上的电场为0,电场与磁场的一般形式为
E w = E w t ( x , y ) e i k g z , B w = B w t ( x , y ) e i k g z \textbf E_{w} = \textbf E_{wt}(x,y)e^{ik_gz},\textbf B_{w} = \textbf B_{wt}(x,y)e^{ik_gz} Ew=Ewt(x,y)eikgz,Bw=Bwt(x,y)eikgz

且只需求解
( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) E w t z ( x , y ) = 0 ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + w 2 c 2 − k g 2 ) B w t z ( x , y ) = 0 (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) E_{wtz}(x,y)=0 \\ (\frac{\partial^2 }{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{w^2}{c^2}-k_g^2) B_{wtz}(x,y)=0 (x22+y22+c2w2kg2)Ewtz(x,y)=0(x22+y22+c2w2kg2)Bwtz(x,y)=0

如果是TM模,则第二个方程中 B w t z = 0 B_{wtz}=0 Bwtz=0,第一个方程的一般解为
E w t z = E 0 sin ⁡ ( k x x ) sin ⁡ ( k y y ) , k x = m π a , k y = n π b , m , n ∈ N k g 2 + k x 2 + k y 2 = w 2 c 2 ⇒ k g 2 = w 2 c 2 − π 2 ( m 2 a 2 + n 2 b 2 ) E_{wtz} = E_0 \sin(k_x x)\sin(k_yy),k_x= \frac{m \pi}{a},k_y = \frac{n \pi }{b},m,n \in \mathbb{N} \\ k_g^2+k_x^2+k_y^2 = \frac{w^2}{c^2}\Rightarrow k_g^2 = \frac{w^2}{c^2}-\pi^2(\frac{m^2}{a^2}+\frac{n^2}{b^2}) Ewtz=E0sin(kxx)sin(kyy),kx=amπ,ky=bnπ,m,nNkg2+kx2+ky2=c2w2kg2=c2w2π2(a2m2+b2n2)

通过调整导线的尺寸 a , b a,b a,b,我们可以通过控制 k g k_g kg来改变电磁波沿 z z z方向传播的形式(with attenuation or without attenuation etc.)。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页