UA PHYS515A 电磁理论V 电磁波与辐射5 电磁波在介质中的传播

UA PHYS515A 电磁理论V 电磁波与辐射5 电磁波在介质中的传播

在介绍麦克斯韦方程的时候,我们提到过
D ⃗ = E ⃗ + 4 π P ⃗ \vec D = \vec E + 4 \pi \vec P D =E +4πP

P ⃗ \vec P P 表示polarization vector, D ⃗ \vec D D 是dielectric displacement vector,在各向同性线性介质中,
D ⃗ = ϵ E ⃗ \vec D = \epsilon \vec E D =ϵE

ϵ \epsilon ϵ表示permittivity,是一个常数,现在我们放松这个假设,考虑更一般的设定: ϵ = ϵ ( w ) \epsilon=\epsilon(w) ϵ=ϵ(w),即电磁波的频率会影响介电常数。下面我们用一个简单的例子看看频率与介电常数如何联系起来。

假设有一个带电粒子,它的运动频率为 w 0 w_0 w0 (restoring), 阻尼系数为 γ \gamma γ,电场为 E ⃗ = E ⃗ 0 e − i w t \vec E = \vec E_0e^{-iwt} E =E 0eiwt,restoring force和friction分别为
F ⃗ r e s t = − m e w 0 2 r ⃗ F ⃗ f r i c = − m e γ r ⃗ ˙ \vec F_{rest} = -m_ew_0^2\vec r \\ \vec F_{fric} = -m_e\gamma \dot{\vec r} F rest=mew02r F fric=meγr ˙

根据牛顿第二定律,
m e ( r ⃗ ¨ + γ r ⃗ ˙ + w 0 2 r ⃗ ) = e E ⃗ m_e(\ddot{\vec r}+\gamma \dot{\vec r}+w_0^2 \vec r)=e \vec E me(r ¨+γr ˙+w02r )=eE

这就是经典的周期性外力作用下带阻尼的弹簧运动方程,它的一个特解是
r ⃗ = e E ⃗ / m e w 0 2 − w 2 − i w γ \vec r = \frac{e \vec E/m_e}{w_0^2-w^2-iw\gamma} r =w02w2iwγeE /me

接下来,我们尝试由外部电场激发出的dipole moment,单个带电粒子激发出的dipole moment是 e r ⃗ e \vec r er ,假设某个介质含有 N N N个这样的粒子,那么
P ⃗ = N e r ⃗ = e 2 E ⃗ N / m e w 0 2 − w 2 − i w γ \vec P = Ne \vec r = \frac{e^2 \vec E N/m_e}{w_0^2-w^2 - iw \gamma} P =Ner =w02w2iwγe2E N/me

于是
D ⃗ = ( 1 + 4 π e 2 N / m e w 0 2 − w 2 − i w γ ) E ⃗ \vec D = \left( 1+\frac{4 \pi e^2N/m_e}{w_0^2-w^2-iw\gamma} \right) \vec E D =(1+w02w2iwγ4πe2N/me)E

显然介电常数是与频率有关的,
ϵ ( w ) = 1 + 4 π e 2 N / m e w 0 2 − w 2 − i w γ \epsilon(w)= 1+\frac{4 \pi e^2N/m_e}{w_0^2-w^2-iw\gamma} ϵ(w)=1+w02w2iwγ4πe2N/me


现在我们写出电磁波在介质中传播的麦克斯韦方程,同样假设没有source,那么
∇ ⋅ E ⃗ = 0 ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ + 1 c ∂ B ⃗ ∂ t = 0 ∇ × B ⃗ − μ ϵ c ∂ E ⃗ ∂ t = 4 π μ c J ⃗ \nabla \cdot \vec{E} = 0\\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}+\frac{1}{c}\frac{\partial \vec{B}}{\partial t}=0 \\ \nabla \times \vec{B}-\frac{\mu \epsilon}{c}\frac{\partial \vec{E}}{\partial t} = \frac{4 \pi \mu}{c} \vec J E =0B =0×E +c1tB =0×B cμϵtE =c4πμJ

使用常规技巧,取后两个方程的旋度化简可得:
− ∇ 2 E ⃗ + μ ϵ c 2 ∂ 2 E ⃗ ∂ t 2 = − ∂ ∂ t 4 π μ c J ⃗ − ∇ 2 B ⃗ + μ ϵ c 2 ∂ 2 B ⃗ ∂ t 2 = 4 π μ c ∇ × J ⃗ -\nabla^2 \vec E + \frac{\mu \epsilon}{c^2 }\frac{\partial^2 \vec E}{\partial t^2}=-\frac{\partial }{\partial t} \frac{4 \pi \mu}{c} \vec J \\ -\nabla^2 \vec B + \frac{\mu \epsilon}{c^2 }\frac{\partial^2 \vec B}{\partial t^2}= \frac{4 \pi \mu}{c} \nabla \times \vec J 2E +c2μϵt22E =tc4πμJ 2B +c2μϵt22B =c4πμ×J

这两个方程是非齐次的四维时空中的波动方程,等式右边的非齐次项用来model介电常数的频率相关性,我们可以直接写出它们特解的形式:
E ⃗ = E ⃗ w e i w t , B ⃗ = B ⃗ w e i w t \vec E = \vec E_w e^{iwt},\vec B = \vec B_w e^{iwt} E =E weiwt,B =B weiwt

假设 J ⃗ = J ⃗ w e i w t \vec J = \vec J_w e^{iwt} J =J weiwt,代入原方程后可以得到Helmholtz方程:
[ ∇ 2 + k 2 ( w ) ] E ⃗ w = − 4 π i c μ ϵ k ( w ) J ⃗ w [ ∇ 2 + k 2 ( w ) ] B ⃗ w = − 4 π μ c ∇ × J ⃗ w [\nabla^2 + k^2(w)] \vec E_{w}=-\frac{4 \pi i}{c}\sqrt{\frac{\mu}{\epsilon}}k(w) \vec J_w \\ [\nabla^2 + k^2(w)] \vec B_{w} =- \frac{4 \pi \mu}{c} \nabla \times \vec J_w [2+k2(w)]E w=c4πiϵμ k(w)J w[2+k2(w)]B w=c4πμ×J w

其中
k ( w ) = n ( w ) w c , n ( w ) = μ ϵ k(w) = \frac{n(w)w}{c}, n(w)=\sqrt{\mu \epsilon} k(w)=cn(w)w,n(w)=μϵ

因为 E ⃗ \vec E E B ⃗ \vec B B 在电磁场中的地位是对称的,所以我们希望上面的两个Helmholtz方程形式再接近一点,为此引入generalized Ohm‘s law:
J ⃗ w = Γ E ⃗ w , Γ = Γ R e + i Γ I m \vec J_w = \Gamma \vec E_w, \Gamma = \Gamma_{Re}+i \Gamma_{Im} J w=ΓE w,Γ=ΓRe+iΓIm

将Helmholtz方程合并为
[ ∇ 2 + k 2 ( w ) + i 4 π n ( w ) Γ c ϵ ] [ E ⃗ w B ⃗ w ] = 0 [\nabla^2+k^2(w)+i\frac{4 \pi n(w) \Gamma}{c \epsilon}] \left[ \begin{matrix} \vec E_w \\ \vec B_w \end{matrix} \right]=0 [2+k2(w)+icϵ4πn(w)Γ][E wB w]=0

这就与我们上一章用过的Helmholtz方程不一样了,所以我们重新定义一下wave number:
[ k ′ ( w ) ] 2 = [ k ( w ) ] 2 + i 4 π n ( w ) Γ c ϵ [ k'(w)]^2=[k(w)]^2+i\frac{4 \pi n(w) \Gamma}{c \epsilon} [k(w)]2=[k(w)]2+icϵ4πn(w)Γ

于是
E ⃗ w = E ⃗ 0 e i k ′ ( w ) ⋅ r ⃗ = E ⃗ 0 e i k r ′ ( w ) ⋅ r ⃗ ⏟ p r o p a g a t i o n ⋅ e − k i ′ ( w ) ⋅ r ⃗ ⏟ a t t e n u a t i o n \vec E_w = \vec E_0 e^{ik'(w) \cdot \vec r} \\ = \vec E_0 \underbrace{e^{ik'_r(w)\cdot \vec r}}_{propagation} \cdot \underbrace{e^{-k'_i(w) \cdot \vec r}}_{attenuation} E w=E 0eik(w)r =E 0propagation eikr(w)r attenuation eki(w)r

考虑几种特例: Γ = − i N w e 2 m e ( w 0 2 − w 2 − i w γ ) \Gamma = \frac{-iNwe^2}{m_e(w_0^2-w^2-iw\gamma)} Γ=me(w02w2iwγ)iNwe2

  1. 介质是导体(存在自由电荷,也存在固定的电荷):导体中 w 0 = 0 , w < < γ w_0=0,w<<\gamma w0=0,w<<γ,所以 Γ ≈ e 2 N m e γ \Gamma \approx \frac{e^2N}{m_e\gamma} Γmeγe2N我们非常熟悉的欧姆定律就是这个公式。 Γ \Gamma Γ是实数,则wave number是复数,这时propagation项不存在,也就是说除非介质非常非常薄,不然电磁波几乎无法通过介质(比较直观的一个例子是金属不透光)
  2. 介质是dielectric(不存在自由电荷,但固定电荷可极化): Γ \Gamma Γ是虚数,则wave number是实数,这时attenuation项不复存在,电磁波可以没有衰减地通过介质
  3. 介质是plasma(全是自由电荷):plasma不存在restoring force与friction, w 0 = γ = 0 w_0=\gamma=0 w0=γ=0 ( k ′ ) 2 = k 2 ( 1 − 4 π N e 2 m e w 2 ϵ ) (k')^2=k^2(1-\frac{4 \pi Ne^2}{m_e w^2 \epsilon}) (k)2=k2(1mew2ϵ4πNe2)定义plasma frequency w p 2 = 4 π N e 2 m e ϵ w_p^2 = \frac{4 \pi Ne^2}{m_e \epsilon} wp2=meϵ4πNe2如果 w > w p w>w_p w>wp,则 k ′ k' k是实数;如果 w < w p w<w_p w<wp,则 k ′ k' k是虚数
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页