UA PHYS515A 电磁理论V 电磁波与辐射2 电磁波的能量

UA PHYS515A 电磁理论V 电磁波与辐射2 电磁波的能量

在讨论电磁场的能量时,我们引入了Poynting矢量,为了描述波动,我们把电场与磁场描述为时空的复变函数,因此Poynting矢量也需要做一些修正:
S ⃗ = c 8 π E ⃗ × H ⃗ ∗ \vec S = \frac{c}{8 \pi} \vec E \times \vec H^* S =8πcE ×H

H ⃗ ∗ \vec H^* H 表示mangetic field的共轭,这里用magnetic field而不是magnetic induction是因为避免在公式中引入介电常数和磁导率,因为这两个值受介质属性的影响,在某些介质中可能是关于空间的函数,推导微分公式的时候也就需要把介电常数与磁导率也考虑进来,因此为了规避这些操作,让公式更简便,用magnetic field会更方便。下面展开Poynting矢量
S ⃗ = 1 2 c 4 π [ ( E ⃗ o , R e × H ⃗ 0 , R e + E ⃗ o , I m × H ⃗ 0 , I m ) + i ( E ⃗ o , I m × H ⃗ 0 , R e − E ⃗ o , R e × H ⃗ 0 , I m ) ] \vec S = \frac{1}{2} \frac{c}{4 \pi}[(\vec E_{o,Re} \times \vec H_{0,Re}+\vec E_{o,Im} \times \vec H_{0,Im}) \\ + i(\vec E_{o,Im} \times \vec H_{0,Re}-\vec E_{o,Re} \times \vec H_{0,Im})] S =214πc[(E o,Re×H 0,Re+E o,Im×H 0,Im)+i(E o,Im×H 0,ReE o,Re×H 0,Im)]

于是
R e [ S ⃗ ] = c 8 π ( E ⃗ o , R e × H ⃗ 0 , R e + E ⃗ o , I m × H ⃗ 0 , I m ) Re[\vec S]=\frac{c}{8 \pi}(\vec E_{o,Re} \times \vec H_{0,Re}+\vec E_{o,Im} \times \vec H_{0,Im}) Re[S ]=8πc(E o,Re×H 0,Re+E o,Im×H 0,Im)

在非导体介质中, M ⃗ = 0 \vec M=0 M =0
H ⃗ = 1 μ B ⃗ \vec H = \frac{1}{\mu} \vec B H =μ1B

上一讲推导了
B ⃗ 0 = μ ϵ k ^ × E ⃗ 0 \vec B_0 = \sqrt{\mu \epsilon}\hat k \times \vec E_0 B 0=μϵ k^×E 0

因此
S ⃗ = c 8 π ϵ / μ ∣ E ⃗ 0 ∣ 2 k ^ \vec S = \frac{c}{8 \pi}\sqrt{ \epsilon/\mu}|\vec E_0|^2 \hat k S =8πcϵ/μ E 02k^

其中 ∣ E ⃗ 0 ∣ 2 |\vec E_0|^2 E 02由实部与虚部构成,所以修正后的Poynting矢量是除以 8 8 8而不是 4 4 4


考虑一个截面积为 A A A,长度为 v d t vdt vdt的区域,当电磁波穿过这个区域时,流经这个区域的能量为
u A v d t = S ⃗ ⋅ A ⃗ d t u = S ⃗ ⋅ n ^ v uAvdt = \vec S \cdot \vec Adt \\ u = \frac{\vec S \cdot \hat n}{v} uAvdt=S A dtu=vS n^

简单起见,假设 S ⃗ \vec S S 与外法线方向平行,则
u = μ ϵ c c 8 π ϵ μ ∣ E ⃗ 0 ∣ 2 = ϵ 8 π ∣ E ⃗ 0 ∣ 2 u = \frac{\sqrt{\mu \epsilon}}{c} \frac{c}{8 \pi}\sqrt{\frac{\epsilon}{\mu}}|\vec E_0|^2=\frac{\epsilon}{8 \pi}|\vec E_0|^2 u=cμϵ 8πcμϵ E 02=8πϵE 02

这个结论与Faraday的实验一致。


已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页