UA PHYS515A 电磁理论V 电磁波与辐射1 电磁波的方程

UA PHYS515A 电磁理论V 电磁波与辐射1 电磁波的方程

这是春季学期的最后一章,从这一章开始我们研究电磁波的性质。春季学期四章分别介绍静电学问题、静磁学问题、运动的source产生电磁场、以及无source时电磁波的传播;秋季学期会引入侠义相对论为工具,研究电磁场与source的交替作用。

在介质中,无源的电磁场满足下面的麦克斯韦方程:
∇ ⋅ E ⃗ = 0 ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ + 1 c ∂ B ⃗ ∂ t = 0 ∇ × B ⃗ − μ ϵ c ∂ E ⃗ ∂ t = 0 \nabla \cdot \vec{E} = 0\\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}+\frac{1}{c}\frac{\partial \vec{B}}{\partial t}=0 \\ \nabla \times \vec{B}-\frac{\mu \epsilon}{c}\frac{\partial \vec{E}}{\partial t} = 0 E =0B =0×E +c1tB =0×B cμϵtE =0

用Fourier component表示电场与磁场的波动:
E ⃗ = E ⃗ 0 e i ( k ⃗ ⋅ x ⃗ − w t ) , B ⃗ = B ⃗ 0 e i ( k ⃗ ⋅ x ⃗ − w t ) \vec E = \vec E_0e^{i(\vec k \cdot \vec x-wt)},\vec B = \vec B_0e^{i(\vec k \cdot \vec x - wt)} E =E 0ei(k x wt),B =B 0ei(k x wt)

其中 w w w是角速度, x ⃗ \vec x x 是位置, k ⃗ \vec k k 满足
k ⃗ ⋅ k ⃗ = ( w / v ) 2 , v = c μ ϵ \vec k \cdot \vec k = (w/v)^2,v = \frac{c}{\sqrt{\mu \epsilon}} k k =(w/v)2,v=μϵ c

∣ k ⃗ ∣ |\vec k| k 被称为wave number, v v v是波速。


下面我们把Fourier component表示的电场与磁场代入麦克斯韦方程中,以此得到一些电磁波传播的规律’。
∇ ⋅ E ⃗ = ∇ ⋅ E ⃗ 0 e i ( k ⃗ ⋅ x ⃗ − w t ) = i ( k ⃗ ⋅ E ⃗ 0 ) e i ( k ⃗ ⋅ x ⃗ − w t ) = 0 ⇒ k ⃗ ⋅ E ⃗ 0 = 0 \nabla \cdot \vec E = \nabla \cdot \vec E_0e^{i(\vec k \cdot \vec x-wt)} = i(\vec k \cdot \vec E_0)e^{i(\vec k \cdot \vec x-wt)}=0 \\ \Rightarrow \vec k \cdot \vec E_0 = 0 E =E 0ei(k x wt)=i(k E 0)ei(k x wt)=0k E 0=0

类似地, k ⃗ ⋅ B ⃗ 0 = 0 \vec k \cdot \vec B_0=0 k B 0=0;根据第四个方程
k ^ × B ⃗ 0 = − μ ϵ E ⃗ 0 k ^ × ( k ^ × B ⃗ 0 ) = − μ ϵ k ^ × E ⃗ 0 ( k ^ ⋅ B ⃗ 0 ) k ^ − ( k ^ ⋅ k ^ ) B ⃗ = − μ ϵ k ^ × E ⃗ 0 B ⃗ 0 = μ ϵ k ^ × E ⃗ 0 \hat k \times \vec B_0 = -\sqrt{\mu \epsilon} \vec E_0 \\ \hat k \times (\hat k \times \vec B_0) = -\sqrt{\mu \epsilon} \hat k \times \vec E_0 \\ (\hat k \cdot \vec B_0)\hat k-(\hat k\cdot \hat k) \vec B = -\sqrt{\mu \epsilon} \hat k \times \vec E_0 \\ \vec B_0 = \sqrt{\mu \epsilon} \hat k \times \vec E_0 k^×B 0=μϵ E 0k^×(k^×B 0)=μϵ k^×E 0(k^B 0)k^(k^k^)B =μϵ k^×E 0B 0=μϵ k^×E 0

这说明在电磁波的传播中,如果介质不是导体,那么电磁波是横波,并且磁场方向、电场方向与波的传播方向满足右手法则。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页