UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒

UA PHYS515A 电磁理论IV 时变电磁场理论3 电磁场的能量守恒

时变电磁场的传播成为电磁波,它可以携带能量,这一讲我们讨论电磁场的能量。回忆一下电荷守恒,麦克斯韦在推导他的方程组的时候,用电荷守恒修正了Ampere定律,他导出的微分形式的电荷守恒是
∂ ρ ∂ t + ∇ ⋅ J ⃗ = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot \vec J = 0 tρ+J =0

与电荷类似,在无外源的条件下,电磁场的能量也是一个守恒量,我们可以类似电荷守恒的思路导出电磁场能量守恒的微分方程。


假设空间中 r ⃗ ′ \vec r' r 的位置存在scalar potential为 Φ ( r ⃗ ′ ) \Phi(\vec r') Φ(r )的电场,我们把一个电荷 δ ρ ( r ⃗ ′ ) \delta \rho(\vec r') δρ(r )从无穷远处移到 r ⃗ ′ \vec r' r 的位置需要做功
δ W ( r ⃗ ′ ) = Φ ( r ⃗ ′ ) δ ρ ( r ⃗ ′ ) \delta W(\vec r')=\Phi(\vec r')\delta \rho(\vec r') δW(r )=Φ(r )δρ(r )

这里的 δ \delta δ表示变分,用 V V V表示全空间,则
δ W = ∫ V Φ ( r ⃗ ′ ) δ ρ ( r ⃗ ′ ) d 3 r ⃗ ′ \delta W = \int_V \Phi(\vec r')\delta \rho(\vec r') d^3 \vec r' δW=VΦ(r )δρ(r )d3r

下面我们尝试移除与电磁场无关的量,根据Gauss定理,
ρ = 1 4 π ∇ ⋅ E ⃗ δ ρ = 1 4 π ∇ ⋅ δ E ⃗ \rho = \frac{1}{4 \pi }\nabla \cdot \vec E \\ \delta \rho = \frac{1}{4 \pi } \nabla \cdot \delta \vec E ρ=4π1E δρ=4π1δE

对下面第二个等号的第一项用Gauss散度定理,得到的曲面积分为0(只要 S ( V ) S(V) S(V)足够大)
δ W = ∫ V Φ ( r ⃗ ′ ) 1 4 π ∇ ⋅ δ E ⃗ ( r ⃗ ′ ) d 3 r ⃗ ′ = − 1 4 π ∫ V [ ∇ ⋅ ( δ E ⃗ Φ ) − δ E ⃗ ⋅ ∇ Φ ] d 3 r ⃗ ′ = − 1 4 π ∫ V δ E ⃗ ⋅ ∇ Φ d 3 r ⃗ ′ = 1 4 π ∫ V δ E ⃗ ⋅ E ⃗ d 3 r ⃗ ′ \delta W = \int_V \Phi(\vec r') \frac{1}{4 \pi } \nabla \cdot \delta \vec E(\vec r')d^3 \vec r' \\ = -\frac{1}{4 \pi} \int_V[\nabla \cdot (\delta \vec E \Phi)-\delta \vec E \cdot \nabla \Phi]d^3 \vec r' \\ = - \frac{1}{4 \pi}\int_V \delta \vec E \cdot \nabla \Phi d^3 \vec r' = \frac{1}{4 \pi} \int_V \delta \vec E \cdot \vec E d^3 \vec r' δW=VΦ(r )4π1δE (r )d3r =4π1V[(δE Φ)δE Φ]d3r =4π1VδE Φd3r =4π1VδE E d3r

现在对这个式子取积分
W = 1 4 π ∫ V ∫ 0 E ⃗ δ E ⃗ ⋅ E ⃗ d 3 r ⃗ ′ = 1 8 π ∫ V E ⃗ 2 d 3 r ⃗ W=\frac{1}{4 \pi} \int_V \int_0^{\vec E} \delta \vec E \cdot \vec E d^3 \vec r'=\frac{1}{8 \pi} \int_V \vec E^2 d^3 \vec r W=4π1V0E δE E d3r =8π1VE 2d3r

于是能量密度(energy density)为
u E = 1 8 π E ⃗ 2 u_E = \frac{1}{8\pi}\vec E^2 uE=8π1E 2


假设空间中存在磁感应强度为 B ⃗ \vec B B 的磁场,对于一段电流微元 I d l ⃗ Id\vec l Idl ,它在磁场中移动 δ r ⃗ \delta \vec r δr 的位移需要做功
δ W = − I c d l ⃗ × B ⃗ ⋅ δ r ⃗ = I c d l ⃗ × δ r ⃗ ⋅ B ⃗ = I c d A ⃗ ⋅ B ⃗ = I δ Φ B c \delta W = -\frac{I}{c}d\vec l \times \vec B \cdot \delta \vec r = \frac{I}{c} d\vec l\times \delta \vec r \cdot \vec B = \frac{I}{c}d \vec A \cdot \vec B = \frac{I \delta \Phi_B}{c} δW=cIdl ×B δr =cIdl ×δr B =cIdA B =cIδΦB

这里 Φ B \Phi_B ΦB表示magnetic flux(磁通量),同样可以对这个式子求积分得到能量密度
u B = 1 8 π B ⃗ 2 u_B = \frac{1}{8 \pi}\vec B^2 uB=8π1B 2

于是电磁场 ( E ⃗ , B ⃗ ) (\vec E,\vec B) (E ,B )的总能量密度为
u = u E + u B = 1 8 π ( E ⃗ 2 + B ⃗ 2 ) u=u_E+u_B=\frac{1}{8 \pi}(\vec E^2+\vec B^2) u=uE+uB=8π1(E 2+B 2)


下面我们推导能量守恒,
∂ ∂ t ∫ V u d 3 r ⃗ ′ = 1 8 π ∫ V ( 2 E ⃗ ⋅ ∂ E ⃗ ∂ t + 2 B ⃗ ⋅ ∂ B ⃗ ∂ t ) d 3 r ⃗ ′ \frac{\partial}{\partial t} \int_V u d^3 \vec r' = \frac{1}{8 \pi} \int_V \left( 2 \vec E \cdot \frac{\partial \vec E}{\partial t}+ 2 \vec B \cdot \frac{\partial \vec B}{\partial t}\right)d^3 \vec r' tVud3r =8π1V(2E tE +2B tB )d3r

使用安培定律与法拉第定律,上式等于
1 4 π ∫ V E ⃗ ⋅ ( c ∇ × B ⃗ − 4 π J ⃗ ) + B ⃗ ⋅ ( − c ∇ × E ⃗ ) d 3 r ⃗ ′ \frac{1}{4 \pi} \int_V \vec E \cdot (c \nabla \times \vec B - 4 \pi \vec J)+\vec B \cdot (-c \nabla \times \vec E)d^3 \vec r' 4π1VE (c×B 4πJ )+B (c×E )d3r

其中
− B ⃗ ⋅ ∇ × E ⃗ + E ⃗ ⋅ ∇ × B ⃗ = ∇ ⋅ ( E ⃗ × B ⃗ ) -\vec B \cdot \nabla \times \vec E+\vec E \cdot \nabla \times \vec B = \nabla \cdot (\vec E \times \vec B) B ×E +E ×B =(E ×B )

所以
∂ ∂ t ∫ V u d 3 r ⃗ ′ = − ∫ V J ⃗ ⋅ E ⃗ d 3 r ⃗ ′ + c 4 π ∫ V − ∇ ⋅ ( E ⃗ × B ⃗ ) d 3 r ⃗ ′ \frac{\partial}{\partial t} \int_V u d^3 \vec r' = -\int_V \vec J \cdot \vec E d^3 \vec r'+\frac{c}{4 \pi} \int_V -\nabla \cdot (\vec E \times \vec B)d^3 \vec r' tVud3r =VJ E d3r +4πcV(E ×B )d3r

它的微分形式为
∂ u ∂ t + c 4 π ∇ ⋅ ( E ⃗ × B ⃗ ) = − J ⃗ ⋅ E ⃗ \frac{\partial u}{\partial t}+ \frac{c}{4 \pi}\nabla \cdot (\vec E \times \vec B)=-\vec J \cdot \vec E tu+4πc(E ×B )=J E

定义
S ⃗ = c 4 π E ⃗ × B ⃗ \vec S = \frac{c}{4 \pi} \vec E \times \vec B S =4πcE ×B

它被称为Poynting vector,于是
∂ u ∂ t + ∇ ⋅ S ⃗ = − J ⃗ ⋅ E ⃗ \frac{\partial u}{\partial t}+ \nabla \cdot \vec S=-\vec J \cdot \vec E tu+S =J E

− J ⃗ ⋅ E ⃗ -\vec J \cdot \vec E J E 被称为dissitation term,代表电磁场的能量损失,因为电场会对电流元施加电场力,在变化的电磁场中电场力做功导致电磁场能量耗散;如果 J ⃗ = 0 \vec J=0 J =0,那么系统能量守恒。

相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页