UA PHYS515A 电磁理论IV 时变电磁场理论2 Helmholtz方程与含时的Green函数

UA PHYS515A 电磁理论IV 时变电磁场理论2 Helmholtz方程与含时的Green函数

上一讲的末尾我们介绍了Lorentz Gauge下的含时麦克斯韦方程:
( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) Φ = − 4 π ρ ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) A ⃗ = − 4 π c J ⃗ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\Phi = -4 \pi \rho \\ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\vec A = -\frac{4 \pi }{c}\vec J (2c21t22)Φ=4πρ(2c21t22)A =c4πJ

与静电学与静磁学问题相比,含时的电磁场问题仅仅多了potential关于时间的二阶导项,因此类似的方法比如正交函数法、Green函数法在含时问题中依然适用。下面讨论


第一种常用的工具是Fourier变换:
Φ ( r ⃗ , t ) = 1 2 π ∫ − ∞ + ∞ Φ ( r ⃗ , w ) e − i w t d w \Phi(\vec r,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Phi(\vec r,w)e^{-iwt}dw Φ(r ,t)=2π1+Φ(r ,w)eiwtdw

这样做的好处是把时间与空间分离了成了两个互不干扰的因式,对所有物理量都可以做Fourier变换,这样关于 Φ \Phi Φ的方程就变成了
( ∇ 2 + w 2 c 2 ) Φ ( r ⃗ , w ) = − 4 π ρ ( r ⃗ , w ) \left( \nabla^2 +\frac{w^2}{c^2}\right)\Phi(\vec r,w)=-4\pi \rho(\vec r,w) (2+c2w2)Φ(r ,w)=4πρ(r ,w)

其中 w w w的物理意义是频率。对 A ⃗ \vec A A 的所有分量我们也可以做类似的变化,并最终得到
( ∇ 2 + w 2 c 2 ) A ⃗ ( r ⃗ , w ) = − 4 π c J ⃗ ( r ⃗ , w ) \left( \nabla^2 +\frac{w^2}{c^2}\right)\vec A(\vec r,w)=-\frac{4\pi}{c} \vec J(\vec r,w) (2+c2w2)A (r ,w)=c4πJ (r ,w)

我们称这种形式的方程为Helmo(UA PHYS515A 电磁理论IV 时变电磁场理论2 Fourier变换与含时的Green函数)
上一讲的末尾我们介绍了Lorentz Gauge下的含时麦克斯韦方程: ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) Φ = − 4 π ρ ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) A ⃗ = − 4 π c J ⃗ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\Phi = -4 \pi \rho \\ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\vec A = -\frac{4 \pi }{c}\vec J (2c21t22)Φ=4πρ(2c21t22)A =c4πJ 与静电学与静磁学问题相比,含时的电磁场问题仅仅多了potential关于时间的二阶导项,因此类似的方法比如正交函数法、Green函数法在含时问题中依然适用。


第一种常用的工具是Fourier变换: Φ ( r ⃗ , t ) = 1 2 π ∫ − ∞ + ∞ Φ ( r ⃗ , w ) e − i w t d w \Phi(\vec r,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Phi(\vec r,w)e^{-iwt}dw Φ(r ,t)=2π1+Φ(r ,w)eiwtdw这样做的好处是把时间与空间分离了成了两个互不干扰的因式,对所有物理量都可以做Fourier变换,这样关于 Φ \Phi Φ的方程就变成了 ( ∇ 2 + w 2 c 2 ) Φ ( r ⃗ , w ) = − 4 π ρ ( r ⃗ , w ) \left( \nabla^2 +\frac{w^2}{c^2}\right)\Phi(\vec r,w)=-4\pi \rho(\vec r,w) (2+c2w2)Φ(r ,w)=4πρ(r ,w)其中 w w w的物理意义是频率。对 A ⃗ \vec A A 的所有分量我们也可以做类似的变化,并最终得到 ( ∇ 2 + w 2 c 2 ) A ⃗ ( r ⃗ , w ) = − 4 π c J ⃗ ( r ⃗ , w ) \left( \nabla^2 +\frac{w^2}{c^2}\right)\vec A(\vec r,w)=-\frac{4\pi}{c} \vec J(\vec r,w) (2+c2w2)A (r ,w)=c4πJ (r ,w)我们称这种形式的方程为Helmholtz方程。Helmholtz方程的求解方法可以完全照搬Poisson方程的求解。


第二种常用工具是含时的Green函数(time-dependent Green’s function)。用 G w G_w Gw表示Green函数(关于频率的与位置的),我们希望它满足Helmholtz方程:
( ∇ 2 + w 2 c 2 ) G w ( r ⃗ , r ⃗ ′ ) = − 4 π δ ( 3 ) ( r ⃗ − r ⃗ ′ ) \left( \nabla^2 +\frac{w^2}{c^2}\right)G_w(\vec r,\vec r')=-4 \pi \delta^{(3)}(\vec r - \vec r ') (2+c2w2)Gw(r ,r )=4πδ(3)(r r )

定义 r = ∣ r ⃗ − r ⃗ ′ ∣ r=|\vec r - \vec r'| r=r r ,则
1 r d 2 d r 2 r G w + w 2 c 2 G w = − 4 π δ ( r ) \frac{1}{r}\frac{d^2}{dr^2} rG_w +\frac{w^2}{c^2}G_w = -4 \pi \delta(r) r1dr2d2rGw+c2w2Gw=4πδ(r)

之所以做这个替换是因为在静电学问题中,我们已经知道Green函数虽然对电磁场的几何的描述,但方向的作用并不大,真正影响强度的是与source的距离。这个方程的解是
G w = e ± i k r r , k = w c G_w=\frac{e^{\pm ikr}}{r},k=\frac{w}{c} Gw=re±ikr,k=cw

分母与静电学问题中的Green函数一样,它表示库仑potential,也就是potential与距离成反比;在静电学问题中,分子为1,因为静态问题意味着空间中各处都遵循库仑potential的规则,但在电磁学问题中,分子为 e ± i k r e^{\pm ikr} e±ikr,它表示的是在空间中电磁场以波的形式进行传播的特征。


现在我们从Fourier形式的Green函数推导含时的Green函数,
G ( r ⃗ , t , r ⃗ ′ , t ′ ) = 1 2 π ∫ − ∞ + ∞ e ± i k r r e − i w t d w = 1 2 π ∫ − ∞ + ∞ e ± i k ∣ r ⃗ − r ⃗ ′ ∣ ∣ r ⃗ − r ⃗ ′ ∣ e − i w ( t − t ′ ) d w = 1 2 π ∣ r ⃗ − r ⃗ ′ ∣ ∫ − ∞ + ∞ e − i w ( t − t ′ ) e ± i w c ∣ r ⃗ − r ⃗ ′ ∣ d w = 1 2 π ∣ r ⃗ − r ⃗ ′ ∣ ∫ − ∞ + ∞ e − i w [ ( t − t ′ ) ∓ ∣ r ⃗ − r ⃗ ′ ∣ c ] d w ⇒ G ± ( r , t − t ′ ) = δ ( t − t ′ ∓ r c ) r G(\vec r,t,\vec r',t') = \frac{1}{2 \pi }\int_{-\infty}^{+\infty}\frac{e^{\pm ikr}}{r}e^{-iwt}dw \\ = \frac{1}{2 \pi }\int_{-\infty}^{+\infty}\frac{e^{\pm ik|\vec r - \vec r'|}}{|\vec r - \vec r'|}e^{-iw(t-t')}dw \\ = \frac{1}{2 \pi |\vec r - \vec r'|} \int_{-\infty}^{+\infty}e^{-iw(t-t')}e^{\pm i \frac{w}{c}|\vec r - \vec r'|}dw \\ = \frac{1}{2 \pi |\vec r - \vec r'|} \int_{-\infty}^{+\infty}e^{- iw [(t-t')\mp\frac{|\vec r - \vec r'|}{c}]}dw \\ \Rightarrow G^{\pm}(r,t-t')=\frac{\delta(t-t' \mp \frac{r}{c})}{r} G(r ,t,r ,t)=2π1+re±ikreiwtdw=2π1+r r e±ikr r eiw(tt)dw=2πr r 1+eiw(tt)e±icwr r dw=2πr r 1+eiw[(tt)cr r ]dwG±(r,tt)=rδ(ttcr)

这个表达式说明两点:

  1. 时变电磁场中,库仑potential的规则依然成立;
  2. 当且仅当 t − t ′ − r c = 0 t-t'-\frac{r}{c}=0 ttcr=0时,Dirac函数非0,也就是当source产生的电磁场以光速传播到观察者的位置所需要的时间 r / c r/c r/c加上source激发出电磁场的时刻 t ′ t' t恰好等于观察者观测的时刻 t t t时,观察者可以观测到这个电磁场;如果这两个时刻不匹配,那么观察者无法观测到这个电磁场。

另外需要说明的是时变Green函数中的 ∓ \mp ,如果是 − - ,那么Green函数中的Dirac函数项为 δ ( t − t ′ − r c ) \delta(t-t'-\frac{r}{c}) δ(ttcr),这表示的是在观察者观测的时刻 t t t之前的某个时刻 t ′ t' t电磁场开始传播,传播到观察者的位置需要的时间为 r / c r/c r/c,这个解被称为retarded solution;如果是 + + +,那么Dirac函数为 δ ( t − t ′ + r c ) \delta(t-t'+\frac{r}{c}) δ(tt+cr),它可以理解为在观察者观测时刻 t t t之后的某个时刻 t ′ t' t开始传播的电磁场回溯到观察者的位置时间为 r / c r/c r/c,也可以理解为观察者从 t t t时刻开始光速运动 r / c r/c r/c时间后正好可以观测到 t ′ t' t时传播到 r ⃗ ′ \vec r' r 的电磁场,这个解叫advanced solution。虽然advanced solution的两种解释看上去都很奇怪,但它并没有违背因果律,后续讨论边界条件的时候我们会讨论advanced solution的物理含义。

对于retarded solution,根据Green函数的作用,无边界条件时,电磁场的potential可以表示为
Φ ( − ) ( r ⃗ , t ) = ∬ G − ( r ⃗ , t , r ⃗ ′ , t ′ ) ρ ( r ⃗ ′ , t ′ ) d 3 r ⃗ ′ d t ′ A ⃗ ( − ) ( r ⃗ , t ) = 1 c ∬ G − ( r ⃗ , t , r ⃗ ′ , t ′ ) J ⃗ ( r ⃗ ′ , t ′ ) d 3 r ⃗ ′ d t ′ \Phi^{(-)}(\vec r ,t)=\iint G^{-}(\vec r, t , \vec r' ,t') \rho(\vec r ' ,t ')d^3 \vec r' dt' \\ \vec A^{(-)}(\vec r ,t)=\frac{1}{c}\iint G^{-}(\vec r, t , \vec r' ,t') \vec J(\vec r ' ,t ')d^3 \vec r' dt' Φ()(r ,t)=G(r ,t,r ,t)ρ(r ,t)d3r dtA ()(r ,t)=c1G(r ,t,r ,t)J (r ,t)d3r dt

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页