UA PHYS515A 电磁理论IV 时变电磁场理论1 含时的麦克斯韦方程

UA PHYS515A 电磁理论IV 时变电磁场理论1 含时的麦克斯韦方程

前两个部分分别讨论静电学问题与静磁学问题的麦克斯韦方程以及适用的解法,实际上这两个部分是试图把电学现象与磁学现象拆分成两种独立的现象进行研究,这一部分我们来看怎么用麦克斯韦方程统一电磁现象。


从Faraday定律开始:
∇ × E ⃗ = − 1 c ∂ B ⃗ ∂ t \nabla \times \vec{E}=-\frac{1}{c}\frac{\partial \vec{B}}{\partial t} ×E =c1tB

这是麦克斯韦方程组中的第三个方程,我们可以很直观地看到电场强度 E ⃗ \vec E E 与磁感应强度 B ⃗ \vec B B 之间是存在直接联系的,并且这种联系并不独立于时间。为了基于这个方程理解电磁场,我们引入两类不同的观察者,比较他们对这个电磁场的观测,一类观察者静止,另一类观察者随电磁场一共运动。虽然说观察电磁场有点抽象,但大家可以联系最早定义电场的时候所做的“观察”,也就是在电场中放一个测试电荷,观察测试电荷受力来倒推电场的特征。对于电磁场的观测也是类似的,我们把观察者理解为一个测试电荷即可。

C C C表示一个环路,有一个穿过这个环路的磁场 B ⃗ \vec B B ,这个环路的速度为 v ⃗ \vec v v ,假设有两个观察者,一个坐在这个环路上(相关物理量加’以示区分),另一个静止不动。根据Faraday定律,
∮ C E ⃗ ′ ⋅ d l ⃗ = − 1 c d Φ ′ d t \oint_C \vec E' \cdot d \vec l = -\frac{1}{c}\frac{d \Phi'}{dt} CE dl =c1dtdΦ

这里的 Φ ′ \Phi' Φ表示运动的观察者观测到的磁通量 (magnetic flux),
Φ ′ = ∫ S ( C ) B ⃗ ′ ⋅ d A ⃗ \Phi' = \int_{S(C)} \vec B' \cdot d \vec A Φ=S(C)B dA

物理量关于时间的全微分等于物理量的时变效应+场位移的时变效应
d d t = ∂ ∂ t + v ⃗ ⋅ ∇ \frac{d}{dt}=\frac{\partial }{\partial t}+\vec v \cdot \nabla dtd=t+v

运动的观察者与环路相对静止,所以第二种效应为0,磁通量的变化率为
d Φ ′ d t = d d t ∫ S ( C ) B ⃗ ′ ⋅ d A ⃗ = ∫ S ( C ) ∂ B ⃗ ′ ∂ t ⋅ d A ⃗ \frac{d \Phi'}{dt}=\frac{d}{dt}\int_{S(C)} \vec B' \cdot d \vec A=\int_{S(C)} \frac{\partial \vec B'}{\partial t} \cdot d \vec A dtdΦ=dtdS(C)B dA =S(C)tB dA

综合一下我们有
∮ C E ⃗ ′ ⋅ d l ⃗ = − 1 c ∫ S ( C ) ∂ B ⃗ ′ ∂ t ⋅ d A ⃗ \oint_C \vec E' \cdot d \vec l=-\frac{1}{c}\int_{S(C)} \frac{\partial \vec B'}{\partial t} \cdot d \vec A CE dl =c1S(C)tB dA

静止的观察者与环路存在相对速度,所以位移的时变效应不为0,磁通量的变化率为
d Φ d t = ( ∂ ∂ t + v ⃗ ⋅ ∇ ) ∫ S ( C ) B ⃗ ⋅ d A ⃗ \frac{d \Phi}{dt} = \left( \frac{\partial }{\partial t}+\vec v \cdot \nabla \right)\int_{S(C)} \vec B \cdot d \vec A dtdΦ=(t+v )S(C)B dA

其中
( v ⃗ ⋅ ∇ ) B ⃗ = ∇ × ( B ⃗ × v ⃗ ) + v ⃗ ( ∇ ⋅ B ⃗ ) − B ⃗ ( ∇ ⋅ v ⃗ ) + ( B ⃗ ⋅ ∇ ) v ⃗ (\vec v \cdot \nabla) \vec B = \nabla \times (\vec B \times \vec v)+\vec v (\nabla \cdot \vec B)-\vec B (\nabla \cdot \vec v)+(\vec B \cdot \nabla)\vec v (v )B =×(B ×v )+v (B )B (v )+(B )v

因为 B ⃗ \vec B B v ⃗ \vec v v 的散度为0,所以
d Φ d t = ∫ S ( C ) ( ∂ B ⃗ ∂ t + ∇ × ( B ⃗ × v ⃗ ) ) ⋅ d A ⃗ \frac{d \Phi}{dt} =\int_{S(C)} \left( \frac{\partial \vec B}{\partial t}+\nabla \times (\vec B \times \vec v)\right) \cdot d \vec A dtdΦ=S(C)(tB +×(B ×v ))dA

对最后一项用Stokes定理,
∫ S ( C ) ∇ × ( B ⃗ × v ⃗ ) ⋅ d A ⃗ = − ∮ C v ⃗ × B ⃗ ⋅ d A ⃗ \int_{S(C)} \nabla \times (\vec B \times \vec v) \cdot d\vec A =-\oint_C \vec v \times \vec B \cdot d \vec A S(C)×(B ×v )dA =Cv ×B dA

综上,
∮ C E ⃗ ′ ⋅ d l ⃗ = − 1 c ∫ S ( C ) ∂ B ⃗ ∂ t ⋅ d A ⃗ + 1 c ∮ C v ⃗ × B ⃗ ⋅ d A ⃗ = ∮ C E ⃗ ⋅ d l ⃗ + 1 c ∮ C v ⃗ × B ⃗ ⋅ d A ⃗ \oint_C \vec E' \cdot d \vec l = -\frac{1}{c}\int_{S(C)} \frac{\partial \vec B}{\partial t} \cdot d \vec A+\frac{1}{c}\oint_C \vec v \times \vec B \cdot d \vec A \\ = \oint_C \vec E \cdot d \vec l +\frac{1}{c}\oint_C \vec v \times \vec B \cdot d \vec A CE dl =c1S(C)tB dA +c1Cv ×B dA =CE dl +c1Cv ×B dA

因为这里的 C C C是任意的,上式要成立除非
E ⃗ ′ = E ⃗ + 1 c v ⃗ × B ⃗ \vec E'=\vec E+\frac{1}{c} \vec v \times \vec B E =E +c1v ×B

这就是Faraday得到的经验公式,在环路上的观察者可以观测到一个更强的电场,按高中物理的解释,这个增量是由环路切割磁感线形成的。


现在我们引入磁感应强度的向量势, B ⃗ = ∇ × A ⃗ \vec B = \nabla \times \vec A B =×A ,代入到Faraday定律中,
∇ × E ⃗ = − 1 c ∂ B ⃗ ∂ t = − 1 c ∂ ∂ t ∇ × A ⃗ = − 1 c ∇ × ∂ A ⃗ ∂ t \nabla \times \vec E = -\frac{1}{c}\frac{\partial \vec B}{\partial t}= -\frac{1}{c}\frac{\partial }{\partial t} \nabla \times \vec A=-\frac{1}{c} \nabla \times \frac{\partial \vec A}{\partial t} ×E =c1tB =c1t×A =c1×tA

于是
∇ × ( E ⃗ + 1 c ∂ A ⃗ ∂ t ) = 0 \nabla \times \left( \vec E + \frac{1}{c}\frac{\partial \vec A}{\partial t} \right)=0 ×(E +c1tA )=0

这说明括号中间的部分可以用某个函数的散度表示,引入
Φ = Φ ( r ⃗ , t ) \Phi=\Phi(\vec r,t) Φ=Φ(r ,t)

使得
E ⃗ + 1 c ∂ A ⃗ ∂ t = − ∇ Φ \vec E + \frac{1}{c}\frac{\partial \vec A}{\partial t} =-\nabla \Phi E +c1tA =Φ

这里的 Φ \Phi Φ不是电势也不是磁通,而是表示矢量场 E ⃗ + 1 c ∂ A ⃗ ∂ t \vec E + \frac{1}{c}\frac{\partial \vec A}{\partial t} E +c1tA 的scalar potential,有了这个关系我们就可以把 E ⃗ \vec E E 用两个potential表示:
E ⃗ = − ∇ Φ − 1 c ∂ A ⃗ ∂ t \vec E =-\nabla \Phi - \frac{1}{c}\frac{\partial \vec A}{\partial t} E =Φc1tA

根据麦克斯韦方程组的第一个方程:
∇ ⋅ E ⃗ = 4 π ρ ∇ 2 Φ + 1 c ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − 4 π ρ \nabla \cdot \vec E=4 \pi \rho \\ \nabla^2 \Phi +\frac{1}{c}\frac{\partial }{\partial t} (\nabla \cdot \vec A)=-4 \pi \rho E =4πρ2Φ+c1t(A )=4πρ

与静电学问题相比,时变电磁场理论关于电场的方程多了 1 c ∂ ∂ t ( ∇ ⋅ A ⃗ ) \frac{1}{c}\frac{\partial }{\partial t} (\nabla \cdot \vec A) c1t(A )这一项,这就使原本简单的Poisson方程变成了一个inhomogenuous 2-order PDE。在最开始介绍麦克斯韦方程的时候,我们介绍了Ampere定律用potential表示的形式,它在时变的电磁场中依然成立
∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ + 1 c 2 ∂ 2 A ⃗ ∂ 2 t + ∂ ∂ t ∇ Φ = 4 π c J ⃗ \nabla(\nabla \cdot \vec{A})-\Delta \vec{A}+\frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial ^2 t}+\frac{\partial }{\partial t} \nabla \Phi=\frac{4\pi}{c} \vec{J} (A )ΔA +c212t2A +tΦ=c4πJ

整理一下就是
∇ 2 A ⃗ − 1 c 2 ∂ 2 A ⃗ ∂ 2 t − ∇ ( ∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t ) = − 4 π c J ⃗ \nabla^2 \vec A-\frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial ^2 t}-\nabla \left( \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}\right)=-\frac{4\pi}{c} \vec{J} 2A c212t2A (A +c1tΦ)=c4πJ

综上,我们得到了含时的麦克斯韦方程:
∇ 2 Φ + 1 c ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − 4 π ρ ∇ 2 A ⃗ − 1 c 2 ∂ 2 A ⃗ ∂ 2 t − ∇ ( ∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t ) = − 4 π c J ⃗ \nabla^2 \Phi +\frac{1}{c}\frac{\partial }{\partial t} (\nabla \cdot \vec A)=-4 \pi \rho \\ \nabla^2 \vec A-\frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial ^2 t}-\nabla \left( \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}\right)=-\frac{4\pi}{c} \vec{J} 2Φ+c1t(A )=4πρ2A c212t2A (A +c1tΦ)=c4πJ

其中
B ⃗ = ∇ × A ⃗ E ⃗ = − ∇ Φ − 1 c ∂ A ⃗ ∂ t \vec B = \nabla \times \vec A \\ \vec E =-\nabla \Phi - \frac{1}{c}\frac{\partial \vec A}{\partial t} B =×A E =Φc1tA

时变电磁场理论的建模就将基于这几个方程进行。在更一般的框架中,我们需要引入狭义相对论,在四维时空中把 Φ , A ⃗ \Phi,\vec A Φ,A 当成一个有四个分量的vector potential进行处理,这个话题后续再谈。为了稍微简化一下方程,我们对potential做Gauge transformation,
A ⃗ → A ⃗ + ∇ ψ Φ → Φ − 1 c ∂ ψ ∂ t \vec A \to \vec A + \nabla \psi \\ \Phi \to \Phi-\frac{1}{c}\frac{\partial \psi}{\partial t} A A +ψΦΦc1tψ

我们希望这个变换使得 ∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t = 0 \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}=0 A +c1tΦ=0,假设这一项本来不为0,做了变换后它就变成了
∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t + ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) ψ \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}+\left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\psi A +c1tΦ+(2c21t22)ψ

假设这一项为0,为了确定 ψ \psi ψ,我们需要求解
( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) ψ = − ( ∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t ) \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\psi = -\left( \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}\right) (2c21t22)ψ=(A +c1tΦ)

这是一个四维时空中的波动方程,所以 ψ \psi ψ一定有解,这说明我们总是可以做一个gauge transformation使得 ∇ ⋅ A ⃗ + 1 c ∂ Φ ∂ t = 0 \nabla \cdot \vec A+\frac{1}{c}\frac{\partial \Phi}{\partial t}=0 A +c1tΦ=0,我们称
A ⃗ → A ⃗ + ∇ ψ Φ → Φ − 1 c ∂ ψ ∂ t \vec A \to \vec A + \nabla \psi \\ \Phi \to \Phi-\frac{1}{c}\frac{\partial \psi}{\partial t} A A +ψΦΦc1tψ

为Lorentz Gauge。在Lorentz gauge下,含时麦克斯韦方程被简化为
( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) Φ = − 4 π ρ ( ∇ 2 − 1 c 2 ∂ 2 ∂ t 2 ) A ⃗ = − 4 π c J ⃗ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\Phi = -4 \pi \rho \\ \left( \nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \right)\vec A = -\frac{4 \pi }{c}\vec J (2c21t22)Φ=4πρ(2c21t22)A =c4πJ

ρ , J ⃗ \rho,\vec J ρ,J 视为电磁场的source,在这个方程中 Φ , A ⃗ \Phi,\vec A Φ,A 的作用从数学上看是完全等价的,因此在四维时空中可以直接将二者合并。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页