UA PHYS515A 电磁学II 静电学问题8 球坐标系中的Laplace方程与球谐函数

UA PHYS515A 电磁学II 静电学问题8 球坐标系中的Laplace方程与球谐函数

球坐标下的Laplace方程为

∇ 2 Φ ( r , θ , ϕ ) = 1 r ∂ 2 ∂ r 2 ( r Φ ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ Φ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 Φ ∂ ϕ 2 = 0 \nabla^2 \Phi(r,\theta,\phi) = \frac{1}{r}\frac{\partial^2}{\partial r^2}(r\Phi)+\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{\partial \Phi}{\partial \theta}) \\ + \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 \Phi}{\partial \phi^2}=0 2Φ(r,θ,ϕ)=r1r22(rΦ)+r2sinθ1θ(sinθθΦ)+r2sin2θ1ϕ22Φ=0

假设可分离变量,
Φ ( r , θ , ϕ ) = U ( r ) r P ( θ ) Q ( ϕ ) \Phi(r,\theta,\phi)=\frac{U(r)}{r}P(\theta)Q(\phi) Φ(r,θ,ϕ)=rU(r)P(θ)Q(ϕ)

将这个表达式代入Laplace方程并引入比例常数 m m m,使得
m 2 = − Q ′ ′ Q = r 2 sin ⁡ 2 θ [ U ′ ′ U + ( P ′ sin ⁡ θ ) ′ r 2 P sin ⁡ θ ] m^2 = -\frac{Q''}{Q}=r^2 \sin^2 \theta[\frac{U''}{U}+\frac{(P'\sin \theta)'}{r^2P \sin \theta}] m2=QQ=r2sin2θ[UU+r2Psinθ(Psinθ)]

第一个等号的解系为 { e ± i m ϕ } \{e^{\pm i m \phi}\} {e±imϕ},引入第二个比例常数 λ \lambda λ来处理第二个等号,
r 2 U ′ ′ U = λ = − 1 P sin ⁡ θ ( P ′ sin ⁡ θ ) ′ − m 2 sin ⁡ 2 θ r^2 \frac{U''}{U}=\lambda = -\frac{1}{P\sin \theta}(P'\sin \theta)'-\frac{m^2}{\sin^2 \theta} r2UU=λ=Psinθ1(Psinθ)sin2θm2

第二个等号可以做一个换元, x = cos ⁡ θ x = \cos \theta x=cosθ,则
[ ( 1 − x 2 ) P ′ ] ′ + ( λ − m 2 1 − x 2 ) P = 0 [(1-x^2)P']'+(\lambda-\frac{m^2}{1-x^2})P=0 [(1x2)P]+(λ1x2m2)P=0

如果 m = 0 m=0 m=0,这个方程的解就是Legendre多项式:
P 0 ( x ) = 1 P 1 ( x ) = x P 2 ( x ) = 3 x 2 − 1 2 ⋯ P_0(x) = 1 \\ P_1(x)=x \\ P_2(x)=\frac{3x^2-1}{2} \\ \cdots P0(x)=1P1(x)=xP2(x)=23x21

m ≠ 0 m \ne 0 m=0时,考虑 m = − l , − ( l − 1 ) , ⋯   , 0 , ⋯   , ( l − 1 ) , l m=-l,-(l-1),\cdots,0,\cdots,(l-1),l m=l,(l1),,0,,(l1),l,方程的解为
P l m ( x ) = ( − 1 ) m ( 1 − x 2 ) m / 2 P l ( m ) ( x ) P_l^m(x)=(-1)^m(1-x^2)^{m/2}P_l^{(m)}(x) Plm(x)=(1)m(1x2)m/2Pl(m)(x)

{ P l m e ± i m ϕ } \{P_l^me^{\pm im\phi}\} {Plme±imϕ}是一个完备的函数系,称这个函数系为球谐函数,记为 Y l m ( θ , ϕ ) \mathcal{Y}_{lm}(\theta,\phi) Ylm(θ,ϕ)
Y l m ( θ , ϕ ) = 2 l + 1 4 π ( l − m ) ! ( l + m ) ! P l m ( cos ⁡ θ ) e i m ϕ \mathcal{Y}_{lm}(\theta,\phi)=\sqrt{\frac{2l+1}{4 \pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos \theta)e^{im\phi} Ylm(θ,ϕ)=4π2l+1(l+m)!(lm)! Plm(cosθ)eimϕ

最后考虑
U ′ ′ − λ U / r = 0 , λ = l ( l + 1 ) U''-\lambda U/r=0,\lambda = l(l+1) UλU/r=0,λ=l(l+1)

它的解为
U = A r l + 1 + B r − l U = Ar^{l+1}+Br^{-l} U=Arl+1+Brl

最后我们可以写出球坐标下电势的通解:
Φ ( r , θ , ϕ ) = 1 r ∑ l , m [ A l , m r l + 1 + B l , m r l ] Y l , m ( θ , ϕ ) \Phi(r,\theta,\phi)=\frac{1}{r}\sum_{l,m}[A_{l,m}r^{l+1}+B_{l,m}r^l]\mathcal{Y}_{l,m}(\theta,\phi) Φ(r,θ,ϕ)=r1l,m[Al,mrl+1+Bl,mrl]Yl,m(θ,ϕ)

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页