UA PHYS515 电磁理论II 静电场问题7 柱坐标系中的Laplace方程与Bessel函数

UA PHYS515 电磁理论II 静电场问题7 柱坐标系中的Laplace方程与Bessel函数

这一讲我们讨论柱坐标系中的Laplace方程:
∇ 2 Φ = 1 η ∂ ∂ η ( η ∂ Φ ∂ η ) + 1 η 2 ∂ 2 Φ ∂ ϕ 2 + ∂ 2 Φ ∂ z 2 = 0 \nabla^2 \Phi = \frac{1}{\eta} \frac{\partial }{\partial \eta}(\eta \frac{\partial \Phi}{\partial \eta})+\frac{1}{\eta^2}\frac{\partial^2 \Phi}{\partial \phi^2}+\frac{\partial^2 \Phi}{\partial z^2}=0 2Φ=η1η(ηηΦ)+η21ϕ22Φ+z22Φ=0

假设可分离变量,即
Φ ( η , ϕ , z ) = R ( η ) F ( ϕ ) Z ( z ) \Phi(\eta,\phi,z)=R(\eta)F(\phi)Z(z) Φ(η,ϕ,z)=R(η)F(ϕ)Z(z)

代入到Laplace方程中,
η R ( η R ′ ) ′ + F ′ ′ F + η 2 Z Z ′ ′ = 0 \frac{\eta}{R}(\eta R')'+\frac{F''}{F}+\frac{\eta^2}{Z}Z''=0 Rη(ηR)+FF+Zη2Z=0

引入比例常数 ν \nu ν,使得
− F ′ ′ F = ν η R ( η R ′ ) ′ + η 2 Z Z ′ ′ = ν -\frac{F''}{F}=\nu \\ \frac{\eta}{R}(\eta R')'+\frac{\eta^2}{Z}Z''=\nu FF=νRη(ηR)+Zη2Z=ν

第一个方程的解系为 { e ± i ν ϕ } \{e^{\pm i \nu \phi}\} {e±iνϕ};把第二个方程左右同除以 η 2 \eta^2 η2
1 η R ( η R ′ ) ′ + Z ′ ′ Z = ν 2 η 2 \frac{1}{\eta R}(\eta R')'+\frac{Z''}{Z}=\frac{\nu^2}{\eta^2} ηR1(ηR)+ZZ=η2ν2

引入第二个比例常数 k k k,使得
Z ′ ′ Z = k 2 = ν 2 η 2 − 1 η R ( η R ′ ) ′ \frac{Z''}{Z}=k^2 = \frac{\nu^2}{\eta^2}-\frac{1}{\eta R}(\eta R')' ZZ=k2=η2ν2ηR1(ηR)

k k k的物理本质为wave number,它等于 2 π / λ 2\pi/\lambda 2π/λ λ \lambda λ为波长;第一个等号可以解出 Z Z Z,解系为 { e ± k z } \{e^{\pm kz}\} {e±kz},第二个等号是一个Bessel方程:
R ′ ′ + 1 η R ′ + ( k 2 − ν 2 η 2 ) R = 0 R''+\frac{1}{\eta}R'+(k^2-\frac{\nu^2}{\eta^2})R=0 R+η1R+(k2η2ν2)R=0

做一个自变量变换 x = k η x=k\eta x=kη
R ′ ′ + 1 x R ′ + ( 1 − ν 2 x 2 ) R = 0 R''+\frac{1}{x}R'+(1-\frac{\nu^2}{x^2})R=0 R+x1R+(1x2ν2)R=0

它的解系可以用Bessel函数表示,为 { J ν , J − ν } \{J_{\nu},J_{-\nu}\} {Jν,Jν}
J ν ( x ) = ( x 2 ) ν ∑ j = 0 ∞ ( − 1 ) j j ! Γ ( j + ν + 1 ) ( x 2 ) 2 j J − ν ( x ) = ( x 2 ) − ν ∑ j = 0 ∞ ( − 1 ) j j ! Γ ( j − ν + 1 ) ( x 2 ) 2 j J_{\nu}(x)=(\frac{x}{2})^{\nu} \sum_{j=0}^{\infty} \frac{(-1)^j}{j!\Gamma(j+\nu+1)}(\frac{x}{2})^{2j} \\ J_{-\nu}(x)=(\frac{x}{2})^{-\nu} \sum_{j=0}^{\infty} \frac{(-1)^j}{j!\Gamma(j-\nu+1)}(\frac{x}{2})^{2j} Jν(x)=(2x)νj=0j!Γ(j+ν+1)(1)j(2x)2jJν(x)=(2x)νj=0j!Γ(jν+1)(1)j(2x)2j

ν \nu ν是整数时,
J − ν ( x ) = ( − 1 ) ν J ν J_{-\nu}(x)=(-1)^{\nu}J_{\nu} Jν(x)=(1)νJν

所以Bessel函数并不互相正交,我们不能用它来表示通解;为此,我们可以基于Bessel函数做一些修正,定义Neumann函数
N ν ( x ) = J ν ( x ) cos ⁡ ν π − J − ν ( x ) sin ⁡ ν π N_{\nu}(x)=\frac{J_{\nu}(x)\cos \nu \pi-J_{-\nu}(x)}{\sin \nu \pi} Nν(x)=sinνπJν(x)cosνπJν(x)

于是柱坐标系下, Φ \Phi Φ也可以写成级数的形式,通项为 N ν ( x ) e ± k z e ± i ν ϕ N_{\nu}(x)e^{\pm kz}e^{\pm i \nu \phi} Nν(x)e±kze±iνϕ

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页