UA PHYS515 电磁理论II 静电场问题6 正交函数系简介

UA PHYS515 电磁理论II 静电场问题6 正交函数系简介

完备标准正交函数系

Poisson方程的解可以用正交函数系表示,在不同的坐标系下需要不同的正交函数系表示,这一讲我们介绍一些常用的正交函数系,下一讲开始会介绍一些用正交函数系求解静电学问题的例子。

对于函数系 { U n } n ≥ 0 \{U_n\}_{n \ge 0} {Un}n0,如果
∫ a b U n ∗ ( ξ ) U m ( ξ ) d ξ = δ n m \int_a^b U_n^*(\xi)U_m(\xi)d\xi = \delta_{nm} abUn(ξ)Um(ξ)dξ=δnm

就称这个函数系Orthonomal,这里的 δ n m \delta_{nm} δnm是Kronecker符号。如果对于 [ a , b ] [a,b] [a,b]上的任意函数 f ( ξ ) f(\xi) f(ξ)
f ( ξ ) = ∑ a n U n ( ξ ) f(\xi) = \sum a_n U_n(\xi) f(ξ)=anUn(ξ)

使得 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0, ∃ N \exists N N ∣ f ( ξ ) − ∑ n = 1 N a n U n ( ξ ) ∣ < ϵ |f(\xi)-\sum_{n=1}^N a_nU_n(\xi)| < \epsilon f(ξ)n=1NanUn(ξ)<ϵ

就称 { U n } n ≥ 0 \{U_n\}_{n \ge 0} {Un}n0是完备的。我们需要的是完备的标准正交函数系。

常用的正交系

坐标系正交系
直角坐标系 ( x , y , z ) (x,y,z) (x,y,z)Fourier: e i k ⃗ ⋅ r ⃗ e^{i\vec k \cdot \vec r} eik r e − i k ⃗ ⋅ r ⃗ e^{-i\vec k \cdot \vec r} eik r
球坐标系 ( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ)球谐函数: Y ( θ , ϕ ) \mathcal{Y}(\theta,\phi) Y(θ,ϕ)
柱坐标系 ( η , ϕ , z ) (\eta,\phi,z) (η,ϕ,z)Bessel函数: J ν J_{\nu} Jν

当球坐标系下的解与经角 ϕ \phi ϕ无关时,球谐函数(spherical harmonics)退化为Legendre多项式。

正交系与Laplace方程

考虑无source时电势满足的Laplace方程:
∇ 2 Φ = 0 \nabla^2 \Phi = 0 2Φ=0

直角坐标系
在直角坐标系中,如果可分离变量,则
Φ ( x , y , z ) = X ( x ) Y ( y ) Z ( z ) \Phi(x,y,z)=X(x)Y(y)Z(z) Φ(x,y,z)=X(x)Y(y)Z(z)

于是
∇ 2 Φ = ∂ 2 X Y Z ∂ x 2 + ∂ 2 X Y Z ∂ y 2 + ∂ 2 X Y Z ∂ z 2 = ∂ 2 X ∂ x 2 Y Z + ∂ 2 Y ∂ y 2 X Z + ∂ 2 Z ∂ z 2 X Y = 0 ⇒ X ′ ′ X + Y ′ ′ Y + Z ′ ′ Z = 0 \nabla^2 \Phi = \frac{\partial^2 XYZ}{\partial x^2}+ \frac{\partial^2 XYZ}{\partial y^2}+ \frac{\partial^2 XYZ}{\partial z^2} \\ = \frac{\partial^2 X}{\partial x^2}YZ+\frac{\partial^2 Y}{\partial y^2}XZ+\frac{\partial^2 Z}{\partial z^2}XY = 0 \\ \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}+\frac{Z''}{Z}=0 2Φ=x22XYZ+y22XYZ+z22XYZ=x22XYZ+y22YXZ+z22ZXY=0XX+YY+ZZ=0

不妨引入比例常数 α \alpha α,使得
− X ′ ′ X = Y ′ ′ Y + Z ′ ′ Z = α -\frac{X''}{X}=\frac{Y''}{Y}+\frac{Z''}{Z}=\alpha XX=YY+ZZ=α

从而 X ′ ′ + α 2 X = 0 X''+\alpha^2X=0 X+α2X=0,它的解系为 { e i α x , e − i α x } \{e^{i\alpha x},e^{-i\alpha x}\} {eiαx,eiαx};然后我们再引入一个比例常数 β \beta β,使得
− Y ′ ′ Y + α 2 = Z ′ ′ Z = α 2 + β 2 -\frac{Y''}{Y}+\alpha^2=\frac{Z''}{Z}=\alpha^2+\beta^2 YY+α2=ZZ=α2+β2

可以被拆分为
Y ′ ′ + β 2 Y = 0 Z ′ ′ − ( α 2 + β 2 ) Z = 0 Y''+\beta^2 Y = 0 \\ Z'' - (\alpha^2+\beta^2)Z=0 Y+β2Y=0Z(α2+β2)Z=0

所以 Y Y Y的解系为 { e ± i β y } \{e^{\pm i\beta y}\} {e±iβy} Z Z Z的解系为 { e ± α 2 + β 2 z } \{e^{\pm \sqrt{\alpha^2+\beta^2}z}\} {e±α2+β2 z},三个解系的积就是Laplace方程的解,虚数部分表示正弦波动,实数部分表示电势随距离的衰减。综上,Laplace方程的通解可以写成
Φ ( x , y , z ) = ∑ m , n a n m e ± i α n x e ± i β m y e ± α 2 + β 2 z \Phi(x,y,z)=\sum_{m,n}a_{nm}e^{\pm i \alpha_n x}e^{\pm i \beta_m y}e^{\pm \sqrt{\alpha^2+\beta^2}z} Φ(x,y,z)=m,nanme±iαnxe±iβmye±α2+β2 z

需要注意的是正交函数系方法具有一般性,不管实验设定如何复杂都可以用,但要得到精确的结果就必须要计算更多系数,用更多项来近似,所以需要在精度与计算量之间做权衡;对于对称性比较高的问题,这里面系数不为0的项一般只有几个,这种时候用其他方法其实是更简便的。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页