UA PHYS515A 电磁理论III 静磁学问题3 静磁学问题的边界条件与标量势方法的应用

UA PHYS515A 电磁理论III 静磁学问题3 静磁学问题的边界条件

上一讲介绍了magnetic filed的标量势:
H ⃗ = − ∇ Φ M \vec H = -\nabla \Phi_M H =ΦM

与magnetic induction的向量势:
B ⃗ = ∇ × A ⃗ \vec B = \nabla \times \vec A B =×A

使用这两个构造可以把静磁学问题的Maxwell方程简化为Poisson方程。

边界条件

与静电学问题类似,静磁学问题也有一些常用的边界条件,第一类边界条件由散度定理给出,根据Gauss定理
∇ ⋅ B ⃗ = 0 \nabla \cdot \vec B = 0 B =0

使用散度定理,
∫ V ∇ ⋅ B ⃗ d x ′ d y ′ d z ′ = ∮ S ( V ) B ⃗ ⋅ n ^ d S = 0 \int_V \nabla \cdot \vec Bdx'dy'dz'=\oint_{S(V)} \vec B \cdot \hat ndS=0 VB dxdydz=S(V)B n^dS=0

假设经过边界 S ( V ) S(V) S(V)前后的magnetic filed垂直分量分别为 B 1 , B 2 B_1,B_2 B1,B2,取边界的面积微元 Δ S \Delta S ΔS
∮ S ( V ) B ⃗ ⋅ n ^ d S = ( B 2 − B 1 ) Δ S = 0 ⇒ B 1 = B 2 \oint_{S(V)} \vec B \cdot \hat n dS = (B_2-B_1)\Delta S = 0 \Rightarrow B_1 = B_2 S(V)B n^dS=(B2B1)ΔS=0B1=B2

这说明在经过边界时,magnetic field沿外法线方向是连续变化的;

第二类边界条件由Stokes定理给出,根据安培定律,
∇ × H ⃗ = 4 π c J ⃗ \nabla \times \vec H = \frac{4 \pi}{c}\vec J ×H =c4πJ

用一个小矩形包围一小段边界,记矩阵围成部分为 S S S,则
∫ S ∇ × H ⃗ ⋅ ( n ^ × t ^ ) d S = 4 π c ∫ S J ⃗ ⋅ ( n ^ × t ^ ) d S \int_S \nabla \times \vec H \cdot (\hat n \times \hat t) dS = \frac{4 \pi}{c}\int_S \vec J \cdot (\hat n \times \hat t)dS S×H (n^×t^)dS=c4πSJ (n^×t^)dS

其中 n ^ \hat n n^是磁场的边界外法线方向, t ^ \hat t t^是磁场的边界的切向;根据Stokes定理,我们可以把面积分化为绕这个矩形 R R R的线积分:
∮ R H ⃗ ⋅ d l ⃗ = 4 π c I ⃗ ⋅ ( n ^ × t ^ ) \oint_R \vec H \cdot d \vec l = \frac{4\pi}{c}\vec I \cdot (\hat n \times \hat t) RH dl =c4πI (n^×t^)

第二项表示垂直经过矩形 R R R的电流。假设这个矩阵的长为 L L L,宽可以忽略,则
∮ R H ⃗ ⋅ d l ⃗ = L ( H ⃗ 2 − H ⃗ 1 ) ⋅ t ^ \oint_R \vec H \cdot d\vec l = L(\vec H_2 - \vec H_1)\cdot \hat t RH dl =L(H 2H 1)t^

所以
( H ⃗ 2 − H ⃗ 1 ) ⋅ t ^ = 4 π c K ⃗ ⋅ ( n ^ × t ^ ) (\vec H_2 - \vec H_1)\cdot \hat t = \frac{4\pi}{c}\vec K \cdot (\hat n \times \hat t) (H 2H 1)t^=c4πK (n^×t^)

其中 K ⃗ \vec K K 表示currency per length(与电流密度 J ⃗ \vec J J 不一样, J ⃗ \vec J J 是currency per area)。

例题


有一个厚度可以忽略不计半径为 a a a的圆形薄片,薄片上的电荷密度是 σ \sigma σ,这个薄片绕经过圆心的竖直的直径以 w w w的角速度逆时针匀速转动,计算空间中的磁场。


在余纬角等于 θ \theta θ的位置考虑微元 d θ d\theta dθ,则在 d t dt dt时间内,这一段弧元扫过的面积为
( a sin ⁡ θ w d t ) ( a d θ ) (a \sin \theta w dt)(a d \theta) (asinθwdt)(adθ)

所以运动电荷量为 d Q = σ a 2 w sin ⁡ θ d θ d t dQ=\sigma a^2w\sin \theta d \theta dt dQ=σa2wsinθdθdt因此电流为
I = d Q d t = σ a 2 w sin ⁡ θ d θ I = \frac{dQ}{dt}=\sigma a^2 w \sin \theta d\theta I=dtdQ=σa2wsinθdθ

电流线密度为
K = I a d θ = σ a w sin ⁡ θ = K 0 sin ⁡ θ , K 0 ≜ σ a w K = \frac{I}{a d\theta}=\sigma a w \sin \theta = K_0 \sin \theta,K_0\triangleq \sigma a w K=adθI=σawsinθ=K0sinθ,K0σaw

引入标量势 Φ M \Phi_M ΦM满足 H ⃗ = − ∇ Φ M \vec H = -\nabla \Phi_M H =ΦM,则
∇ 2 Φ M = 0 \nabla^2 \Phi_M = 0 2ΦM=0

我们可以把这个方程的通解用Legendre多项式表示:
Φ M = ∑ l = 0 ∞ [ A l r l + B l r − ( l + 1 ) ] P l ( cos ⁡ θ ) \Phi_M = \sum_{l=0}^{\infty} [A_lr^l+B_lr^{-(l+1)}]P_l(\cos \theta) ΦM=l=0[Alrl+Blr(l+1)]Pl(cosθ)

进一步,我们可以分边界内部/外部的磁场讨论:
Φ M = { ∑ l = 0 ∞ A l r l P l ( cos ⁡ θ ) , r ≤ a ∑ l = 0 ∞ B l r − ( l + 1 ) P l ( cos ⁡ θ ) , r > a \Phi_M = \begin{cases} \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta), r \le a \\ \sum_{l=0}^{\infty} B_l r^{-(l+1)}P_l(\cos \theta), r>a \end{cases} ΦM={l=0AlrlPl(cosθ),ral=0Blr(l+1)Pl(cosθ),r>a

需要注意的是在这个极坐标 ( r , θ ) (r,\theta) (r,θ)中, r r r的方向是边界的外法线方向 n ^ \hat n n^ θ \theta θ轴的方向是余纬角的切线方向 t ^ \hat t t^,根据右手法则, n ^ × t ^ \hat n \times \hat t n^×t^与薄片线速度方向一致。所以在边界上
B ⃗ ⋅ n ^ = B r = − ∂ Φ M ∂ r = 0 ⇒ ∑ l = 1 ∞ A l l a l − 1 P l ( cos ⁡ θ ) = − ∑ l = 0 ∞ ( l + 1 ) B l P l ( cos ⁡ θ ) a l + 2 \vec B \cdot \hat n = B_r=-\frac{\partial \Phi_M}{\partial r}=0 \\ \Rightarrow \sum_{l=1}^{\infty} A_lla^{l-1}P_l(\cos \theta) = - \sum_{l=0}^{\infty} \frac{(l+1)B_lP_l(\cos \theta)}{a^{l+2}} B n^=Br=rΦM=0l=1Allal1Pl(cosθ)=l=0al+2(l+1)BlPl(cosθ)

因为 P l P_l Pl是正交多项式,所以上面的等式要成立除非 P l P_l Pl对应系数相等:
{ B 0 a 2 = 0 − 2 B 1 a 3 = A 1 ⋯ − ( l + 1 ) B l a l + 2 = A l l a l − 1 ⋯ \begin{cases}\frac{B_0}{a^2} = 0 \\ -\frac{2B_1}{a^3}=A_1 \\ \cdots \\ -\frac{(l+1)B_l}{a^{l+2}}=A_lla^{l-1} \\ \cdots \end{cases} a2B0=0a32B1=A1al+2(l+1)Bl=Allal1

另一组边界条件是
B ⃗ ⋅ t ^ = B θ = − 1 r ∂ Φ M ∂ θ = 4 π c K ⃗ ⋅ ( n ^ × t ^ ) \vec B \cdot \hat t = B_{\theta}=-\frac{1}{r}\frac{\partial \Phi_M}{\partial \theta} = \frac{4 \pi }{c}\vec K \cdot (\hat n \times \hat t) B t^=Bθ=r1θΦM=c4πK (n^×t^)

因为 K ⃗ \vec K K 与电荷运动方向相同,也就是与薄片线速度方向相同,而前面我们也分析过, n ^ × t ^ \hat n \times \hat t n^×t^也与薄片线速度方向相同,因此在边界上有
− 1 r ∂ Φ M ∂ θ = 4 π c K 0 sin ⁡ θ − 1 a ∑ l = 0 ∞ A l a l d P l d θ − 1 a ∑ l = 0 ∞ B l a l + 1 d P l d θ = 4 π c K 0 sin ⁡ θ -\frac{1}{r} \frac{\partial \Phi_M}{\partial \theta} = \frac{4 \pi }{c}K_0 \sin \theta \\ -\frac{1}{a}\sum_{l=0}^{\infty}A_la^l\frac{dP_l}{d \theta} - \frac{1}{a}\sum_{l=0}^{\infty}\frac{B_l}{a^{l+1}}\frac{dP_l}{d \theta}= \frac{4 \pi }{c}K_0 \sin \theta r1θΦM=c4πK0sinθa1l=0AlaldθdPla1l=0al+1BldθdPl=c4πK0sinθ

这个式子也是对应项系数相等,我就懒得写了。综合这两组方程,最后只有 A 1 , B 1 A_1,B_1 A1,B1非零,答案是
Φ M = { − 8 π K 0 3 c r cos ⁡ θ , r < a 4 π a 3 K 0 3 c cos ⁡ θ r 2 , r > a \Phi_M = \begin{cases} -\frac{8 \pi K_0}{3c}r \cos \theta , r < a \\ \frac{4 \pi a^3 K_0}{3c} \frac{\cos \theta}{r^2}, r>a \end{cases} ΦM={3c8πK0rcosθ,r<a3c4πa3K0r2cosθ,r>a

B ⃗ = − ∇ Φ M = { 8 π K 0 3 c ( cos ⁡ θ r ^ − r sin ⁡ θ θ ^ ) , r < a 4 π a 3 K 0 3 c ( 2 cos ⁡ θ r 2 r ^ + sin ⁡ θ r 3 θ ^ ) , r > a \vec B =-\nabla \Phi_M= \begin{cases} \frac{8 \pi K_0}{3c}(\cos \theta \hat r - r\sin \theta \hat \theta), r<a \\ \frac{4 \pi a^3 K_0}{3c}(\frac{2 \cos \theta}{r^2}\hat r+\frac{\sin \theta}{r^3} \hat \theta), r>a \end{cases} B =ΦM={3c8πK0(cosθr^rsinθθ^),r<a3c4πa3K0(r22cosθr^+r3sinθθ^),r>a

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页