UA PHYS515A 电磁理论III 静磁学问题2 标量势方法与向量势方法简介

UA PHYS515A 电磁理论III 静磁学问题2 标量势方法与向量势方法简介

标量势方法

当空间中不存在电流密度时( J ⃗ = 0 \vec J=0 J =0),可以用标量势方法求解静磁学问题,根据安培定律
∇ × H ⃗ = 4 π c J ⃗ = 0 \nabla \times \vec H = \frac{4 \pi }{c} \vec J = 0 ×H =c4πJ =0

于是我们可以引入 Φ M \Phi_M ΦM作为磁场的标量势,使得
H ⃗ = − ∇ Φ M \vec H = -\nabla \Phi_M H =ΦM

因为标量场散度的旋度为0,所以这个构造可以使安培定律在 J ⃗ = 0 \vec J=0 J =0时自然成立,此时(在均匀介质中)
∇ ⋅ B ⃗ ∝ ∇ 2 Φ M = 0 \nabla \cdot \vec B \propto \nabla^2 \Phi_M = 0 B 2ΦM=0

这样我们就把静磁学问题化归为Laplace方程求解的问题了。

向量势方法

引入向量势 A ⃗ \vec A A 使得 B ⃗ = ∇ × A ⃗ \vec B = \nabla \times \vec A B =×A ,这个构造使得 B ⃗ \vec B B 的散度一定为0,因此我们只需要代入安培定律中解 A ⃗ \vec A A :
∇ × ( ∇ × A ⃗ ) = ∇ ( ∇ ⋅ A ⃗ ) − ∇ 2 A ⃗ = 4 π μ c J ⃗ \nabla \times (\nabla \times \vec A) = \nabla(\nabla \cdot \vec A)-\nabla^2 \vec A = \frac{4 \pi \mu}{c} \vec J ×(×A )=(A )2A =c4πμJ

与标量势方法不同的是,向量势方法并不要求 J ⃗ = 0 \vec J = 0 J =0;使用Coulomb gauge,我们应用使得 ∇ ⋅ A ⃗ = 0 \nabla \cdot \vec A=0 A =0的参考点,于是
∇ 2 A ⃗ = − 4 π μ c J ⃗ \nabla^2 \vec A = -\frac{4 \pi \mu}{c} \vec J 2A =c4πμJ

这样我们就可以把静磁学问题化归为三个Poisson方程的求解了。

Hard Ferromagnets

假设 J ⃗ = 0 , M ⃗ ≠ 0 \vec J = 0,\vec M \ne 0 J =0,M =0,即 H ⃗ , B ⃗ \vec H,\vec B H ,B 并不相等,也不一定成正比,但我们知道

B ⃗ = H ⃗ + 4 π M ⃗ \vec B = \vec H + 4 \pi \vec M B =H +4πM

所以
∇ ⋅ B ⃗ = ∇ ⋅ ( H ⃗ + 4 π M ⃗ ) = 0 ∇ ⋅ ( − ∇ Φ M ) + 4 π ∇ ⋅ M ⃗ = 0 ∇ 2 Φ M = 4 π ∇ ⋅ M ⃗ \nabla \cdot \vec B = \nabla \cdot ( \vec H+4\pi \vec M) = 0 \\ \nabla \cdot (-\nabla \Phi_M)+4 \pi \nabla \cdot \vec M = 0 \\ \nabla^2 \Phi_M = 4 \pi \nabla \cdot \vec M B =(H +4πM )=0(ΦM)+4πM =02ΦM=4πM

这样就得到了一个Poisson方程,我们可以把 − ∇ ⋅ M ⃗ -\nabla \cdot \vec M M 看作是磁场的source,记为 ρ M \rho_M ρM,则
∇ 2 Φ M = − 4 π ρ M \nabla^2 \Phi_M = -4 \pi \rho_M 2ΦM=4πρM

这就与我们处理过的静电学问题非常相似了,所以即使是一般介质中的静磁学问题,也是可以用Green函数法、正交函数法之类的方法求解的。

另外,我们还需要根据安培定律求解 B ⃗ \vec B B
∇ × H ⃗ = ∇ × ( B ⃗ − 4 π M ⃗ ) = ∇ × ∇ × A ⃗ − 4 π ∇ × M ⃗ = 0 ⇒ ∇ 2 A ⃗ = − 4 π c J ⃗ M , J ⃗ M = c ∇ × M ⃗ \nabla \times \vec H = \nabla \times (\vec B - 4 \pi \vec M) \\ = \nabla \times \nabla \times \vec A - 4 \pi \nabla \times \vec M = 0 \\ \Rightarrow \nabla^2 \vec A = -\frac{4 \pi}{c}\vec J_M, \vec J_M = c\nabla \times \vec M ×H =×(B 4πM )=××A 4π×M =02A =c4πJ M,J M=c×M

这就是向量势方法中得到的方程。


总结 静磁学的常用方程(缺的那个空也有公式的,但感觉关联不是很大)

微分形式积分形式
∇ ⋅ B ⃗ = 0 \nabla \cdot \vec B = 0 B =0 ∮ S B ⃗ ⋅ d S ⃗ = 0 \oint_S \vec B \cdot d\vec S = 0 SB dS =0
∇ × B ⃗ = 4 π c J ⃗ \nabla \times \vec B = \frac{4 \pi}{c} \vec J ×B =c4πJ ∮ C B ⃗ ⋅ d l ⃗ = 4 π c I \oint_C \vec B \cdot d\vec l = \frac{4 \pi}{c}I CB dl =c4πI
∇ 2 Φ M = 0 \nabla^2 \Phi_M=0 2ΦM=0
∇ 2 A ⃗ = − 4 π c J ⃗ M \nabla^2 \vec A=-\frac{4 \pi }{c}\vec J_M 2A =c4πJ M A ⃗ = 1 c ∫ V J ⃗ ( r ⃗ ′ ) d x ′ d y ′ d z ′ ∥ r ⃗ − r ⃗ ′ ∥ \vec A = \frac{1}{c}\int_V \frac{\vec J(\vec r')dx'dy'dz'}{\|\vec r - \vec r'\|} A =c1Vr r J (r )dxdydz
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页