UA PHYS515 电磁理论II 静电场问题4 用Green函数法求解Dirichlet问题

UA PHYS515 电磁理论II 静电场问题4 用Green函数法求解Dirichlet问题

上一讲我们讨论过Dirichlet问题的积分解:
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S ( V ) Φ ( r ⃗ ′ ) ∂ G ∂ n d S \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'-\frac{1}{4\pi}\oint_{S(V)} \Phi(\vec r')\frac{\partial G}{\partial n}dS Φ(r )=Vρ(r )G(r ,r )dxdydz4π1S(V)Φ(r )nGdS

其中source ρ ( r ⃗ ′ ) \rho(\vec r') ρ(r )与边界 Φ ( r ⃗ ′ ) , r ⃗ ′ ∈ S ( V ) \Phi(\vec r'),\vec r' \in S(V) Φ(r ),r S(V)在Dirichlet问题中都是已知的,因此求解Dirichlet问题的关键在于构造Green函数。在Image charge method的辅助下,我们可以把Green函数写成下面的形式:
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + F ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r')=\frac{1}{|\vec r-\vec r'|}+F(\vec r, \vec r') G(r ,r )=r r 1+F(r ,r )

关于 F F F的构造有下面两个要点:

  1. ∇ 2 F ( r ⃗ , r ⃗ ′ ) = 0 , ∀ r ⃗ ′ ∈ V \nabla^2 F(\vec r,\vec r')=0,\forall \vec r' \in V 2F(r ,r )=0,r V
  2. G ( r ⃗ , r ⃗ ′ ) = 0 , ∀ r ⃗ ′ ∈ S ( V ) G(\vec r,\vec r')=0,\forall \vec r' \in S(V) G(r ,r )=0,r S(V)

如果是Neumann问题,
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ + 1 4 π ∮ S ( V ) Φ ( r ⃗ ′ ) ∂ n G ( r ⃗ , r ⃗ ′ ) d S + ⟨ Φ ⟩ S \Phi(\vec r)= \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz' \\ +\frac{1}{4\pi}\oint_{S(V)}\frac{\Phi(\vec r')}{\partial n}G(\vec r,\vec r')dS+\langle \Phi \rangle_S Φ(r )=Vρ(r )G(r ,r )dxdydz+4π1S(V)nΦ(r )G(r ,r )dS+ΦS

最后一项表示 Φ \Phi Φ在边界 S ( V ) S(V) S(V)上的平均值,这是在取
∂ G ∂ n = − 4 π ∣ S ∣ \frac{\partial G}{\partial n} = -\frac{4\pi}{|S|} nG=S4π

时才成立的,我们希望 ∣ S ∣ |S| S是正无穷,这样最后一项 ⟨ Φ ⟩ S \langle \Phi \rangle_S ΦS会趋近于0,否则在Neumann问题中我们无法直接计算这一项,这种情况下Green函数法就失效了。


例1
在三维直角坐标系中,某电场存在于 V = { ( x , y , z ) : x ≥ 0 } V=\{(x,y,z):x \ge 0\} V={(x,y,z):x0},它的source为 ( a , 0 , 0 ) (a,0,0) (a,0,0)处电荷量为 q q q的点电荷,Dirichlet条件为 Φ ( 0 , y , z ) = Φ 0 , ∀ y , z \Phi(0,y,z)=\Phi_0,\forall y, z Φ(0,y,z)=Φ0,y,z


电荷密度为
ρ ( r ⃗ ′ ) = q δ 3 ( r ⃗ ′ − r ⃗ 0 ) , r ⃗ 0 = ( a , 0 , 0 ) \rho(\vec r')=q\delta^3(\vec r'-\vec r_0),\vec r_0=(a,0,0) ρ(r )=qδ3(r r 0),r 0=(a,0,0)

先写出Green函数
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + F ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|}+F(\vec r,\vec r') G(r ,r )=r r 1+F(r ,r )

其中 F F F满足下面两个条件:
∇ 2 F ( r ⃗ , r ⃗ ′ ) = 0 G ( r ⃗ , r ⃗ ′ ) ∣ r ⃗ ′ ∈ S = 0 = F ( r ⃗ , r ⃗ ′ ) ∣ S = − 1 ∣ r ⃗ − r ⃗ ′ ∣ ∣ S \nabla^2 F(\vec r,\vec r')=0 \\ G(\vec r,\vec r')|_{\vec r '\in S}=0=F(\vec r,\vec r')|_S = -\frac{1}{|\vec r-\vec r'|}|_S 2F(r ,r )=0G(r ,r )r S=0=F(r ,r )S=r r 1S

其中 S = { ( x , y , z ) : x = 0 } S=\{(x,y,z):x=0\} S={(x,y,z):x=0}表示边界,于是
F ∣ S = − 1 x 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 F|_S = -\frac{1}{\sqrt{x^2+(y-y')^2+(z-z')^2}} FS=x2+(yy)2+(zz)2 1

根据Image charge method的思路,在讨论 r ⃗ ′ \vec r' r 处的电荷密度几何效应时,我们总是可以在它关于 y − z y-z yz平面对称的位置放上一个image charge抵消掉它的作用,于是
F ( r ⃗ , r ⃗ ′ ) = − 1 ( x + x ′ ) 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 F(\vec r,\vec r')=-\frac{1}{\sqrt{(x+x')^2+(y-y')^2+(z-z')^2}} F(r ,r )=(x+x)2+(yy)2+(zz)2 1

可以验证它满足上面提到的两个条件。于是Green函数为
G ( r ⃗ , r ⃗ ′ ) = 1 ( x − x ′ ) 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 − 1 ( x + x ′ ) 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 G(\vec r,\vec r') = \frac{1}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}} \\ - \frac{1}{\sqrt{(x+x')^2+(y-y')^2+(z-z')^2}} G(r ,r )=(xx)2+(yy)2+(zz)2 1(x+x)2+(yy)2+(zz)2 1

因此我们可以写出电势能的积分解:
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S Φ 0 ∂ G ( r ⃗ , r ⃗ ′ ) ∂ n ′ d S ′ \Phi(\vec r) =\int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'-\frac{1}{4\pi}\oint_S \Phi_0 \frac{\partial G(\vec r,\vec r')}{\partial n'}dS' Φ(r )=Vρ(r )G(r ,r )dxdydz4π1SΦ0nG(r ,r )dS

这个东西看上去很难计算,但实际上还算是有规律的,第一个积分中电荷密度与dirac函数成正比,积分计算可以实用dirac函数的性质:
∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ = ∫ V q δ 3 ( r ⃗ ′ − ρ 0 ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ = q G ( r ⃗ , r ⃗ 0 ) = q ( x − a ) 2 + y 2 + z 2 − q ( x + a ) 2 + y 2 + z 2 \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz' = \int_V q \delta^3(\vec r'-\rho_0)G(\vec r,\vec r')dx'dy'dz' \\ = qG(\vec r,\vec r_0)=\frac{q}{\sqrt{(x-a)^2+y^2+z^2}} - \frac{q}{\sqrt{(x+a)^2+y^2+z^2}} Vρ(r )G(r ,r )dxdydz=Vqδ3(r ρ0)G(r ,r )dxdydz=qG(r ,r 0)=(xa)2+y2+z2 q(x+a)2+y2+z2 q

第二个积分中,需要注意的是 n n n是边界 S S S的外法线方向,也就是指向 V C V^C VC的方向,因此 n ^ ′ = − x ^ ′ \hat n' = -\hat x' n^=x^,即 x x x轴的负向,另外’表示这是电荷密度的坐标,不带‘的表示测试电荷的坐标。先计算方向导数
∂ G ( r ⃗ , r ⃗ ′ ) ∂ n = − ∂ G ( r ⃗ , r ⃗ ′ ) ∂ x ′ ∣ r ⃗ ′ ∈ S = − 2 x ( x 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 ) 3 / 2 \frac{\partial G(\vec r,\vec r')}{\partial n}=-\frac{\partial G(\vec r,\vec r')}{\partial x'}|_{\vec r' \in S} = -\frac{2x}{(x^2+(y-y')^2+(z-z')^2)^{3/2}} nG(r ,r )=xG(r ,r )r S=(x2+(yy)2+(zz)2)3/22x

再计算曲面积分
∮ S Φ 0 ∂ G ( r ⃗ , r ⃗ ′ ) ∂ n d S = ∬ − 2 x Φ 0 ( x 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 ) 3 / 2 d y ′ d z ′ \oint_S \Phi_0\frac{\partial G(\vec r,\vec r')}{\partial n}dS=\iint \frac{-2x \Phi_0}{(x^2+(y-y')^2+(z-z')^2)^{3/2}}dy'dz' SΦ0nG(r ,r )dS=(x2+(yy)2+(zz)2)3/22xΦ0dydz

所以最终答案为(这个积分就懒得算了,就是在y-z平面积分)
Φ ( r ⃗ ) = q ( x − a ) 2 + y 2 + z 2 − q ( x + a ) 2 + y 2 + z 2 + x Φ 0 2 π ∬ 1 ( x 2 + ( y − y ′ ) 2 + ( z − z ′ ) 2 ) 3 / 2 d y ′ d z ′ \Phi(\vec r)=\frac{q}{\sqrt{(x-a)^2+y^2+z^2}} - \frac{q}{\sqrt{(x+a)^2+y^2+z^2}} \\ + \frac{x\Phi_0}{2\pi} \iint \frac{1}{(x^2+(y-y')^2+(z-z')^2)^{3/2}}dy'dz' Φ(r )=(xa)2+y2+z2 q(x+a)2+y2+z2 q+2πxΦ0(x2+(yy)2+(zz)2)3/21dydz

由此可以计算电场
E ⃗ = − ∇ Φ \vec E = -\nabla \Phi E =Φ

以及y-z平面上的导出电荷密度 σ \sigma σ:
∂ Φ ∂ n = − 4 π σ \frac{\partial \Phi}{\partial n}=-4\pi \sigma nΦ=4πσ

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页