UA PHYS515 电磁理论II 静电场问题3 边值问题及其解的唯一性

UA PHYS515 电磁理论II 静电场问题3 边值问题及其解的唯一性


上一讲的末尾,我们用Green定理导出了电势能的积分形式的解,同时也发现积分解需要加上边界条件才能进一步得到电势能的具体形式,所以这一讲我们简单叙述一下静电学问题常用的边界条件。

Dirichlet问题与Neumann问题

假设边界上的电势能已知,这样的边界条件叫做Dirichlet条件,对应的静电学问题叫做Dirichlet问题;假设边界上的电场/电场沿边界外法向的值已知,这样的边界条件叫做Neumann条件,对应的静电学问题叫做Neumann问题。

边值问题解的唯一性

假设 Φ 1 , Φ 2 \Phi_1,\Phi_2 Φ1,Φ2是source ρ \rho ρ与边界条件相同的两个静电学问题的解,则 Φ 1 = Φ 2 \Phi_1=\Phi_2 Φ1=Φ2

证明
根据Poisson方程:
∇ 2 Φ 1 = − 4 π ρ = ∇ 2 Φ 2 ⇒ ∇ 2 ( Φ 1 − Φ 2 ) = 0 \nabla^2 \Phi_1 = -4\pi \rho = \nabla^2 \Phi_2 \\ \Rightarrow \nabla^2(\Phi_1-\Phi_2)=0 2Φ1=4πρ=2Φ22(Φ1Φ2)=0

根据Green’s First Identity,
∫ V ( b ∇ 2 d + ∇ b ⋅ ∇ d ) d x d y d z = ∮ S ( V ) b ∂ d ∂ n d S \int_V ( b \nabla^2 d+\nabla b \cdot \nabla d)dxdydz=\oint_{S(V)} b \frac{\partial d}{\partial n}dS V(b2d+bd)dxdydz=S(V)bnddS

b = d = Φ 1 − Φ 2 b=d=\Phi_1-\Phi_2 b=d=Φ1Φ2,则
∫ V ∇ ( Φ 1 − Φ 2 ) ⋅ ∇ ( Φ 1 − Φ 2 ) = ∮ S ( V ) ( Φ 1 − Φ 2 ) ∂ ∂ n ( Φ 1 − Φ 2 ) \int_V \nabla(\Phi_1-\Phi_2)\cdot \nabla(\Phi_1-\Phi_2) = \oint_{S(V)}(\Phi_1-\Phi_2)\frac{\partial}{\partial n}(\Phi_1-\Phi_2) V(Φ1Φ2)(Φ1Φ2)=S(V)(Φ1Φ2)n(Φ1Φ2)

对于Dirichlet问题, Φ 1 − Φ 2 = 0 \Phi_1-\Phi_2=0 Φ1Φ2=0;对于Neumann问题, ∂ ∂ n ( Φ 1 − Φ 2 ) = 0 \frac{\partial}{\partial n}(\Phi_1-\Phi_2)=0 n(Φ1Φ2)=0,所以
∫ V ∇ ( Φ 1 − Φ 2 ) ⋅ ∇ ( Φ 1 − Φ 2 ) = 0 ⇒ ∇ ( Φ 1 − Φ 2 ) = 0 \int_V \nabla(\Phi_1-\Phi_2)\cdot \nabla(\Phi_1-\Phi_2) =0 \\ \Rightarrow \nabla (\Phi_1-\Phi_2)=0 V(Φ1Φ2)(Φ1Φ2)=0(Φ1Φ2)=0

于是 Φ 1 = Φ 2 + c o n s t . \Phi_1=\Phi_2+const. Φ1=Φ2+const.,const.的物理意义只是 Φ 1 , Φ 2 \Phi_1,\Phi_2 Φ1,Φ2代表的两个静电场选取的势能参考点不一样,所以静电学问题source与边界条件给定后,它的解是唯一的。

Green函数解释Image charge method

现在我们回到上上讲介绍的例子,假设x-y平面是一块接地的、厚度可以忽略不计的导电板,在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,要计算空间中的电场 E ⃗ \vec{E} E 。应用Image charge method,假设在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,在 d ⃗ 2 = ( 0 , 0 , − d ) \vec d_2 = (0,0,-d) d 2=(0,0,d)的位置有一个电荷量为 q q q的负电荷,则边界条件同样为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0

这个问题的Green函数可以用单电荷的Green函数修正得到:
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + F ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|}+F(\vec r , \vec r') G(r ,r )=r r 1+F(r ,r )

其中 F ( r ⃗ , r ⃗ ′ ) F(\vec r,\vec r') F(r ,r )用来表示image charge的几何效应,然而image charge并不在我们要计算的电场的覆盖区域内,因此
∇ 2 F ( r ⃗ , r ⃗ ′ ) = 0 \nabla^2 F(\vec r, \vec r')=0 2F(r ,r )=0

所以这个修正后的Green函数依然满足
∇ 2 G ( r ⃗ , r ⃗ ′ ) = − 4 π δ 3 ( r ⃗ − r ⃗ ′ ) \nabla^2 G(\vec r ,\vec r')=-4\pi \delta^3(\vec r - \vec r') 2G(r ,r )=4πδ3(r r )

我们得到的电势能的积分解为
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S ( V ) ( Φ ∂ G ( r ⃗ , r ⃗ ′ ) ∂ n − G ( r ⃗ , r ⃗ ′ ) ∂ Φ ∂ n ) d S ′ \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz' \\ -\frac{1}{4\pi}\oint_{S(V)}(\Phi \frac{\partial G(\vec r ,\vec r')}{\partial n}-G(\vec r,\vec r')\frac{\partial \Phi}{\partial n})dS' Φ(r )=Vρ(r )G(r ,r )dxdydz4π1S(V)(ΦnG(r ,r )G(r ,r )nΦ)dS

因此我们可以灵活选取 F ( r ⃗ , r ⃗ ′ ) F(\vec r,\vec r') F(r ,r )使得在Dirichlet问题中,边界上 G = 0 G=0 G=0;在Neumann问题中,边界上 ∂ G ∂ n = 0 \frac{\partial G}{\partial n}=0 nG=0,从而简化计算,当然这是比较理想的情况。更详细一点地说,如果Dirichlet问题中,边界上有 G = 0 G=0 G=0,则
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S ( V ) Φ ∂ G ( r ⃗ , r ⃗ ′ ) ∂ n d S ′ \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz' -\frac{1}{4\pi}\oint_{S(V)}\Phi \frac{\partial G(\vec r ,\vec r')}{\partial n}dS' Φ(r )=Vρ(r )G(r ,r )dxdydz4π1S(V)ΦnG(r ,r )dS

在Dirichlet问题中,边界上的 Φ \Phi Φ已知,所以这个积分式子可以直接计算。然而在Neumann问题中,我们无法使 ∂ G ∂ n = 0 \frac{\partial G}{\partial n}=0 nG=0,以单电荷问题为例,
∇ 2 G = − 4 π δ 3 ( r ⃗ − r ⃗ ′ ) \nabla ^2 G = -4 \pi \delta^3(\vec r - \vec r') 2G=4πδ3(r r )

根据高斯散度定理:
∫ V ∇ 2 G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ = − 4 π = ∫ V ∇ ⋅ ( ∇ G ( r ⃗ , r ⃗ ′ ) ) d x ′ d y ′ d z ′ ⇒ ∮ S ( V ) ∇ G ( r ⃗ , r ⃗ ′ ) d S ⃗ = ∮ S ( V ) ∂ G ∂ n d S = − 4 π \int_V \nabla^2 G(\vec r,\vec r')dx'dy'dz' = -4\pi = \int_V \nabla \cdot (\nabla G(\vec r,\vec r'))dx'dy'dz' \\ \Rightarrow \oint_{S(V)} \nabla G(\vec r, \vec r')d\vec S = \oint_{S(V)} \frac{\partial G}{\partial n}dS = -4\pi V2G(r ,r )dxdydz=4π=V(G(r ,r ))dxdydzS(V)G(r ,r )dS =S(V)nGdS=4π

所以 ∂ G ∂ n \frac{\partial G}{\partial n} nG不能恒等于0,于是一种替代方法是在Neumann问题中,我们尝试选择 F ( r ⃗ , r ⃗ ′ ) F(\vec r,\vec r') F(r ,r )使得
∂ G ∂ n = − 4 π ∣ S ∣ \frac{\partial G}{\partial n} = \frac{-4\pi}{|S|} nG=S4π

于是当 ∣ S ∣ → ∞ |S| \to \infty S时,
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ + 1 4 π ∮ S ( V ) ∂ Φ ∂ n G d S \Phi(\vec r)=\int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'+\frac{1}{4\pi}\oint_{S(V)}\frac{\partial \Phi}{\partial n}GdS Φ(r )=Vρ(r )G(r ,r )dxdydz+4π1S(V)nΦGdS

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页