UA PHYS515 电磁理论II 静电场问题2 电荷与静电场的几何: Green函数法的物理背景

UA PHYS515 电磁理论II 静电场问题2 电荷与静电场的几何: Green函数法的物理背景

上一讲我们介绍了两个靠割补法、猜答案搞出来的例子,猜答案这种方法可以抽象为Green函数法,从而得到在物理学中处理场相关问题的一般性方法。这一讲我们先介绍一些Green函数法的物理直觉。

从最简单的库仑定律开始,真空中电荷产生的静电势为
Φ = − q r \Phi = -\frac{q}{r} Φ=rq

其中 q q q代表charge,或者说静电场的source; r r r代表静电场的geometry,在各种各样的静电场问题中,我们需要做的总是把source的作用传递到场覆盖的几何对象上,Green函数就是一种处理场的geometry的工具,下面我们用一个例子说明在评估静电场的过程中,source与geometry的contribution是可以分离的。

单个电荷形成的静电场

根据库仑定律,在 r ⃗ 0 \vec r_0 r 0处电荷量为 q q q的正电荷形成的电场静电势为
Φ ( r ⃗ ) = − q ∣ r ⃗ − r ⃗ 0 ∣ \Phi(\vec r) = -\frac{q}{|\vec r-\vec r_0|} Φ(r )=r r 0q

电场为
E ⃗ ( r ⃗ ) = − ∇ Φ ( r ⃗ ) = q ( r ⃗ − r ⃗ 0 ) ∣ r ⃗ − r ⃗ 0 ∣ 3 \vec E(\vec r) = -\nabla \Phi(\vec r) =\frac{q(\vec r-\vec r_0)}{|\vec r-\vec r_0|^3} E (r )=Φ(r )=r r 03q(r r 0)

如果换成用电荷密度 ρ ( r ⃗ ) \rho(\vec r) ρ(r )来计算,我们就需要体积分了
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ) d x d y d z ∣ r ⃗ − r ⃗ 0 ∣ \Phi(\vec r)=\int_V \frac{\rho(\vec r)dxdydz}{|\vec r-\vec r_0|} Φ(r )=Vr r 0ρ(r )dxdydz

在上一部分我们讨论过,单个电荷的电荷密度可以用Dirac函数表示,所以这两种关于静电势的关系是等价的,因此我们可以认为库仑定律提供了Poisson方程的一种积分解,下面在数学上验证这一点,计算
∇ 2 Φ = ∇ 2 ∫ V ρ ( r ⃗ ) d x d y d z ∣ r ⃗ − r ⃗ 0 ∣ = ∫ V ρ ( r ⃗ ) ∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ d x d y d z \nabla^2 \Phi = \nabla^2 \int_V \frac{\rho(\vec r)dxdydz}{|\vec r-\vec r_0|} = \int_V \rho(\vec r) \nabla^2 \frac{1}{|\vec r-\vec r_0|}dxdydz 2Φ=2Vr r 0ρ(r )dxdydz=Vρ(r )2r r 01dxdydz

引理
∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ = − 4 π δ 3 ( r ⃗ − r ⃗ 0 ) \nabla^2 \frac{1}{|\vec r-\vec r_0|}=-4\pi \delta^3(\vec r-\vec r_0) 2r r 01=4πδ3(r r 0)

分析
如果这个引理正确,那么
∇ 2 Φ = − 4 π ∫ V ρ ( r ⃗ ) δ 3 ( r ⃗ − r ⃗ 0 ) d x d y d z = − 4 π ρ ( r ⃗ ) \nabla^2 \Phi=-4\pi\int_V \rho(\vec r)\delta^3(\vec r-\vec r_0)dxdydz=-4\pi \rho(\vec{r}) 2Φ=4πVρ(r )δ3(r r 0)dxdydz=4πρ(r )

也就是说积分形式的势能表达式确实是Poisson方程的解。下面我们来证明一下这个引理:

如果我们直接计算这个Laplace算子,那么
∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ = ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = 3 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 / 2 − 3 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 / 2 = { 0 , r ⃗ ≠ r ⃗ 0 0 0 , r ⃗ = r ⃗ 0 \nabla^2 \frac{1}{|\vec r-\vec r_0|} = (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})\frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}} \\ = \frac{3}{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]^{3/2}}-\frac{3}{[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]^{3/2}} \\ = \begin{cases} 0, \vec r \ne \vec r_0 \\ \frac{0}{0}, \vec r = \vec r_0\end{cases} 2r r 01=(x22+y22+z22)(xx0)2+(yy0)2+(zz0)2 1=[(xx0)2+(yy0)2+(zz0)2]3/23[(xx0)2+(yy0)2+(zz0)2]3/23={0,r =r 000,r =r 0

r ⃗ ≠ r ⃗ 0 \vec r \ne \vec r_0 r =r 0时,这个结果是符合我们预期的,因为通过没有包含charge的区域的electric flux等于0;但当 r ⃗ = r ⃗ 0 \vec r = \vec r_0 r =r 0时,这个结果是一个不定型,尽管数学上我们可以接受这个结果,并能做进一步分析,但是在电场中它没有实际意义。于是我们可以把积分形式的电势的Laplace算子做一些定义上的修正,引入一个辅助极限进行计算:
∇ 2 Φ = ∫ V ρ ( r ⃗ ) ∇ 2 lim ⁡ a → 0 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 + a 2 d x d y d z \nabla^2 \Phi=\int_V \rho(\vec r) \nabla^2 \lim_{a \to 0} \frac{1}{\sqrt{|\vec r - \vec r_0|^2+a^2}}dxdydz 2Φ=Vρ(r )2a0limr r 02+a2 1dxdydz

我们可以把修正之前的式子写在这里做一个对比:
∇ 2 Φ = ∫ V ρ ( r ⃗ ) ∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 d x d y d z \nabla^2 \Phi=\int_V \rho(\vec r) \nabla^2 \frac{1}{\sqrt{|\vec r - \vec r_0|^2}}dxdydz 2Φ=Vρ(r )2r r 02 1dxdydz

上面那个式子引入的极限表示我们通过一系列形状不定但包围 r ⃗ , r ⃗ 0 \vec r,\vec r_0 r ,r 0的环路逼近 ∣ r ⃗ − r ⃗ 0 ∣ 2 |\vec r - \vec r_0|^2 r r 02的contour,并以此来计算单电荷电势的Laplace算子。这两个式子在数学上都是正确的,但是下面的式子不一定物理意义。现在我们基于上面的式子进行计算:
∫ V ρ ( r ⃗ ) ∇ 2 lim ⁡ a → 0 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 + a 2 d x d y d z = lim ⁡ a → 0 ∫ V ρ ( r ⃗ ) ∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 + a 2 d x d y d z = 4 π lim ⁡ a → 0 ∫ 0 ∞ ρ ( r ) ∇ 2 1 r 2 + a 2 d r = − 4 π lim ⁡ a → 0 ∫ 0 ∞ ρ ( r ) − 3 a 2 r 2 d r ( r 2 + a 2 ) 5 / 2 \int_V \rho(\vec r) \nabla^2 \lim_{a \to 0} \frac{1}{\sqrt{|\vec r - \vec r_0|^2+a^2}}dxdydz \\ = \lim_{a \to 0}\int_V \rho(\vec r)\nabla^2 \frac{1}{\sqrt{|\vec r - \vec r_0|^2+a^2}}dxdydz \\ =4\pi \lim_{a \to 0}\int_0^{\infty} \rho( r)\nabla^2 \frac{1}{\sqrt{r^2+a^2}}dr \\ = -4\pi \lim_{a \to 0}\int_0^{\infty}\rho(r) \frac{-3a^2r^2dr}{(r^2+a^2)^{5/2}} Vρ(r )2a0limr r 02+a2 1dxdydz=a0limVρ(r )2r r 02+a2 1dxdydz=4πa0lim0ρ(r)2r2+a2 1dr=4πa0lim0ρ(r)(r2+a2)5/23a2r2dr

其中第三个等式是直角坐标系中的积分换成球坐标系中的积分,其中
ρ ( r ⃗ ) = q δ 3 ( r ⃗ − r ⃗ 0 ) = q δ ( r ) , r = ∣ r ⃗ − r ⃗ 0 ∣ \rho(\vec r) = q\delta^3(\vec r - \vec r_0)=q\delta(r), r = |\vec r - \vec r_0| ρ(r )=qδ3(r r 0)=qδ(r),r=r r 0

第四个等式就是计算 1 r 2 + a 2 \frac{1}{\sqrt{r^2+a^2}} r2+a2 1的二阶导,于是
− 4 π lim ⁡ a → 0 ∫ 0 ∞ ρ ( r ) − 3 a 2 r 2 d r ( r 2 + a 2 ) 5 / 2 = − 4 π lim ⁡ a → 0 ∫ 0 ∞ q δ ( r ) − 3 a 2 r 2 d r ( r 2 + a 2 ) 5 / 2 = − 4 π ρ ( r ⃗ ) -4\pi \lim_{a \to 0}\int_0^{\infty}\rho(r) \frac{-3a^2r^2dr}{(r^2+a^2)^{5/2}} \\ = -4\pi \lim_{a \to 0}\int_0^{\infty}q\delta(r)\frac{-3a^2r^2dr}{(r^2+a^2)^{5/2}}=-4\pi \rho(\vec r) 4πa0lim0ρ(r)(r2+a2)5/23a2r2dr=4πa0lim0qδ(r)(r2+a2)5/23a2r2dr=4πρ(r )

这样就验证了积分形式的电势是Poisson方程的解,并且在推导中我们发现
∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ = − 4 π δ 3 ( r ⃗ − r ⃗ 0 ) \nabla^2 \frac{1}{|\vec r-\vec r_0|}=-4\pi \delta^3(\vec r-\vec r_0) 2r r 01=4πδ3(r r 0)

在电势的Laplace算子的计算中:
∇ 2 Φ = ∫ V ρ ( r ⃗ ) ∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 d x d y d z \nabla^2 \Phi=\int_V \rho(\vec r) \nabla^2 \frac{1}{\sqrt{|\vec r - \vec r_0|^2}}dxdydz 2Φ=Vρ(r )2r r 02 1dxdydz

ρ ( r ⃗ ) \rho(\vec r) ρ(r )代表charge的贡献, ∇ 2 1 ∣ r ⃗ − r ⃗ 0 ∣ 2 \nabla^2 \frac{1}{\sqrt{|\vec r - \vec r_0|^2}} 2r r 02 1代表静电场的几何效应,我们发现这个结果事实上与电荷量 q q q成正比的,这就说明在点电荷形成的静电场中,电荷量只是决定电场的强度,而电荷与空间的几何关系则决定了电场的形状,因此我们总是可以单独讨论场的几何形态。

Green函数的一些数学结果

现在我们对上面的例子做一般化处理,引入Green函数 G ( r ⃗ , r ⃗ 0 ) G(\vec r,\vec r_0) G(r ,r 0)描述电场的几何,则上面的例子中:
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ) d x d y d z ∣ r ⃗ − r ⃗ 0 ∣ = ∫ V ρ ( r ⃗ ) G ( r ⃗ , r ⃗ 0 ) d x d y d z G ( r ⃗ , r ⃗ 0 ) = 1 ∣ r ⃗ − r ⃗ 0 ∣ \Phi(\vec r)=\int_V \frac{\rho(\vec r)dxdydz}{|\vec r-\vec r_0|}=\int_V \rho(\vec r)G(\vec r,\vec r_0)dxdydz \\ G(\vec r, \vec r_0)=\frac{1}{|\vec r-\vec r_0|} Φ(r )=Vr r 0ρ(r )dxdydz=Vρ(r )G(r ,r 0)dxdydzG(r ,r 0)=r r 01

对于一般情况,我们总是可以用积分形式写出势能的解
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz' Φ(r )=Vρ(r )G(r ,r )dxdydz

因此在不同问题中,我们需要找的最关键的东西就是Green函数。

Green恒等式与Green定理

回顾叠加原理(superposition principle):电场因为不携带source,所以不会出现高阶或者交互效应,因此电场与电场是可以线性叠加的,基于这个原理我们知道电势能一定是 ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) \rho(\vec r')G(\vec r, \vec r') ρ(r )G(r ,r )的积分的某种线性组合。假设 a ⃗ \vec a a 是一个矢量场,回顾高斯散度定理:
∫ V ∇ ⋅ a ⃗ d x d y d z = ∮ S ( V ) a ⃗ ⋅ n ^ d S \int_V \nabla \cdot \vec a dxdydz = \oint_{S(V)}\vec a \cdot \hat ndS Va dxdydz=S(V)a n^dS

其中 n ^ \hat n n^表示曲面 S ( V ) S(V) S(V)的外法线方向。我们假设矢量场 a ⃗ \vec a a 可以用两个标量场表示: a ⃗ = b ∇ d \vec a = b \nabla d a =bd,于是
∇ ⋅ a ⃗ = ∇ ⋅ ( b ∇ d ) = b ∇ 2 d + ∇ b ⋅ ∇ d a ⃗ ⋅ n ^ = ( b ∇ d ) ⋅ n ^ = b ∂ d ∂ n \nabla \cdot \vec a = \nabla \cdot (b \nabla d) = b \nabla^2 d+\nabla b \cdot \nabla d \\ \vec a \cdot \hat n = (b \nabla d) \cdot \hat n = b \frac{\partial d}{\partial n} a =(bd)=b2d+bda n^=(bd)n^=bnd

代入到高斯散度定理中,我们就得到了Green‘s First Identity:
∫ V ( b ∇ 2 d + ∇ b ⋅ ∇ d ) d x d y d z = ∮ S ( V ) b ∂ d ∂ n d S \int_V ( b \nabla^2 d+\nabla b \cdot \nabla d)dxdydz=\oint_{S(V)} b \frac{\partial d}{\partial n}dS V(b2d+bd)dxdydz=S(V)bnddS

这个恒等式并不实用,因为我们并不想尝试去计算 ∇ b ⋅ ∇ d \nabla b\cdot \nabla d bd,一种消掉这一项的做法是在Green’s First Idensity中交换 b , d b,d b,d的位置,
∫ V ( d ∇ 2 b + ∇ d ⋅ ∇ b ) d x d y d z = ∮ S ( V ) d ∂ b ∂ n d S \int_V ( d \nabla^2 b+\nabla d \cdot \nabla b)dxdydz=\oint_{S(V)} d \frac{\partial b}{\partial n}dS V(d2b+db)dxdydz=S(V)dnbdS

两个等式相减:
∫ V ( b ∇ 2 d − d ∇ 2 b ) d x d y d z = ∮ S ( V ) ( b ∂ d ∂ n − d ∂ b ∂ n ) d S \int_V (b \nabla^2 d-d\nabla^2 b)dxdydz=\oint_{S(V)}( b \frac{\partial d}{\partial n}-d \frac{\partial b}{\partial n})dS V(b2dd2b)dxdydz=S(V)(bnddnb)dS

这就是著名的Green定理。

Green定理在Green函数法中的应用

我们将标量场 b b b替换为电势能 Φ ( r ⃗ ) \Phi(\vec r) Φ(r ),将标量场 d d d替换为Green函数 G ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r') G(r ,r ),根据Green定理,
∫ V ( Φ ∇ 2 G − G ∇ 2 Φ ) d x d y d z = ∮ S ( V ) ( Φ ∂ G ∂ n − G ∂ Φ ∂ n ) d S \int_V (\Phi \nabla^2 G-G\nabla^2 \Phi)dxdydz = \oint_{S(V)}(\Phi \frac{\partial G}{\partial n}-G \frac{\partial \Phi}{\partial n})dS V(Φ2GG2Φ)dxdydz=S(V)(ΦnGGnΦ)dS

在单电荷的例子中,
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|} G(r ,r )=r r 1

因此
∇ 2 G ( r ⃗ , r ⃗ ′ ) = − 4 π δ 3 ( r ⃗ − r ⃗ ′ ) \nabla^2 G(\vec r, \vec r')=-4\pi \delta^3(\vec r - \vec r') 2G(r ,r )=4πδ3(r r )

另外,根据Poisson方程,
∇ 2 Φ = − 4 π ρ \nabla^2 \Phi = -4\pi \rho 2Φ=4πρ

所以
∫ V ( − 4 π δ 3 ( r ⃗ − r ⃗ ′ ) Φ + 4 π ρ ∣ r ⃗ − r ⃗ ′ ∣ ) d x ′ d y ′ d z ′ = ∮ S ( V ) ( Φ ∂ ∂ n 1 ∣ r ⃗ − r ⃗ ′ ∣ − 1 ∣ r ⃗ − r ⃗ ′ ∣ ∂ Φ ∂ n ) d S ′ \int_V(-4\pi \delta^3(\vec r- \vec r')\Phi+\frac{4\pi \rho}{|\vec r - \vec r '|})dx'dy'dz' \\ = \oint_{S(V)}(\Phi \frac{\partial }{\partial n}\frac{1}{|\vec r - \vec r'|}-\frac{1}{|\vec r - \vec r '|}\frac{\partial \Phi}{\partial n})dS' V(4πδ3(r r )Φ+r r 4πρ)dxdydz=S(V)(Φnr r 1r r 1nΦ)dS

这里所有的带‘的位置都表示有source的位置,不带’的位置都表示观察者的位置。如果没有边界,等式右边为0,于是上式等于
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) ∣ r ⃗ − r ⃗ ′ ∣ d x ′ d y ′ d z ′ \Phi(\vec r)=\int_V \frac{\rho(\vec r')}{|\vec r - \vec r'|}dx'dy'dz' Φ(r )=Vr r ρ(r )dxdydz

这就是前文中我们讨论的电势能的积分解;如果存在边界条件,那么
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) ∣ r ⃗ − r ⃗ ′ ∣ d x ′ d y ′ d z ′ + 1 4 π ∮ S ( V ) ( Φ ∂ ∂ n 1 ∣ r ⃗ − r ⃗ ′ ∣ − 1 ∣ r ⃗ − r ⃗ ′ ∣ ∂ Φ ∂ n ) d S ′ \Phi(\vec r) = \int_V \frac{\rho(\vec r')}{|\vec r - \vec r'|}dx'dy'dz' \\ +\frac{1}{4\pi}\oint_{S(V)}(\Phi \frac{\partial }{\partial n}\frac{1}{|\vec r - \vec r'|}-\frac{1}{|\vec r - \vec r '|}\frac{\partial \Phi}{\partial n})dS' Φ(r )=Vr r ρ(r )dxdydz+4π1S(V)(Φnr r 1r r 1nΦ)dS

这个式子实际上也是很难应用的,因为在实际条件中,我们要么知道电势能,要么知道边界上的电场,同时知道两个条件的情况比较少,下一讲我们讨论一些比较常用的边界条件。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页