UA PHYS515 电磁理论II 静电场问题1 对称性与Image Charge Method

对称法与Image Charge Method的理论基础

在上一部分我们讨论了静电场问题的设定,如果 B ⃗ = 0 , H ⃗ = 0 \vec{B}=0,\vec{H}=0 B =0,H =0并且电场与电位移不随时间变化,我们称这样的问题叫静电学问题,在各向同性介质中, D ⃗ = ϵ E ⃗ \vec{D}=\epsilon \vec{E} D =ϵE ϵ \epsilon ϵ是介电常数,我们需要求解的方程是著名的Poisson方程:
∇ 2 Φ = − 4 π ϵ ρ \nabla^2 \Phi = -\frac{4\pi}{\epsilon} \rho 2Φ=ϵ4πρ

其中 Φ \Phi Φ是静电势, ρ \rho ρ是电荷密度, E ⃗ = − ∇ Φ \vec{E}=-\nabla \Phi E =Φ,如果不存在自由电荷, ρ = 0 \rho = 0 ρ=0,则
∇ 2 Φ = Δ Φ = 0 \nabla^2 \Phi = \Delta \Phi= 0 2Φ=ΔΦ=0

这就是同样很有名的Laplace方程,要求解这两种方程需要 Φ \Phi Φ或者 ∇ Φ \nabla \Phi Φ的边界条件,我们在数学物理方法中学过,给定一组边界条件,Poisson方程的解存在唯一,这说明在解决一些对称性比较明显的问题时,我们总是可以用割补法在保证边界条件不变的情况下把复杂的静电场问题简化。这个结论就给了我们非常灵活的解题思路,物理学家认为既然解唯一,那么解题时的思考过程就不用那么严谨(之后我们会介绍数学上严谨的Green函数法),所以物理学家更愿意发挥天马行空的想象力简化问题求解方程。

例1:接地导电板外的自由电荷

问题A:假设x-y平面是一块接地的、厚度可以忽略不计的导电板,在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,要计算空间中的电场 E ⃗ \vec{E} E

这个问题的看上去就是一个高中题目,但实际上要硬解几乎是不可能的,因为空间中的电场实际上是两种电场的叠加:自由正电荷形成的电场、导电板上的引致电场。可以预见到导电板上的引致电场比较难直接计算,所以要硬解这个问题难度很大。

现在我们用割补法,因为Poisson方程只要边界条件一样,解就会一样,问题A中导电板接地,所以边界条件为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0

现在我们构造与问题A具有相同边界条件的问题,记为问题B:假设在 d ⃗ 1 = ( 0 , 0 , d ) \vec d_1=(0,0,d) d 1=(0,0,d)的位置有一个电荷量为 q q q的正电荷,在 d ⃗ 2 = ( 0 , 0 , − d ) \vec d_2 = (0,0,-d) d 2=(0,0,d)的位置有一个电荷量为 q q q的负电荷,则边界条件同样为
Φ ( x , y , 0 , t ) = 0 \Phi(x,y,0,t)=0 Φ(x,y,0,t)=0

问题B求解非常简单,它就是一个空间中两个电荷形成的电场,直接使用公式
Φ ( r ⃗ ) = q ∣ r ⃗ − d ⃗ 1 ∣ − q ∣ r ⃗ − d ⃗ 2 ∣ \Phi(\vec r)=\frac{q}{|\vec r-\vec d_1|}-\frac{q}{|\vec r - \vec d_2|} Φ(r )=r d 1qr d 2q

于是我们可以计算它的梯度得到电场:
E ⃗ = − ∇ Φ ( r ⃗ ) \vec{E}=-\nabla\Phi(\vec r) E =Φ(r )

这个计算中,我们主要算的是
∂ ∂ x 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = − ( x − x 0 ) ( ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ) 3 \frac{\partial }{\partial x}\frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}} \\ = -\frac{(x-x_0)}{(\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2})^3} x(xx0)2+(yy0)2+(zz0)2 1=((xx0)2+(yy0)2+(zz0)2 )3(xx0)

因此
E ⃗ = − ∇ ( q ∣ r ⃗ − d ⃗ 1 ∣ − q ∣ r ⃗ − d ⃗ 2 ∣ ) = q ( r ⃗ − d ⃗ 1 ) ∣ r ⃗ − d ⃗ 1 ∣ 3 − q ( r ⃗ − d ⃗ 2 ) ∣ r ⃗ − d ⃗ 2 ∣ 3 \vec{E}=-\nabla \left( \frac{q}{|\vec r-\vec d_1|}-\frac{q}{|\vec r - \vec d_2|} \right) \\ = \frac{q(\vec r - \vec d_1)}{|\vec r-\vec d_1|^3}-\frac{q(\vec r - \vec d_2)}{|\vec r-\vec d_2|^3} E =(r d 1qr d 2q)=r d 13q(r d 1)r d 23q(r d 2)

另外,既然我们已经知道了空间中的电场分布,导电板上的引致电场就可以被反解出来。考虑面积为 Δ A \Delta A ΔA的区域,根据Gauss定理,
∫ A E ⃗ ⋅ d S ⃗ = 4 π ρ Δ A = E ⃗ ⋅ n ⃗ Δ A = E z Δ A \int_{A} \vec E \cdot d\vec{S}=4\pi \rho \Delta A = \vec{E} \cdot \vec{n} \Delta A=E_z \Delta A AE dS =4πρΔA=E n ΔA=EzΔA

所以引致电荷密度为
ρ = E z 4 π = q 4 π ( z − d ∣ r ⃗ − d ⃗ 1 ∣ 3 − z + d ∣ r ⃗ − d ⃗ 2 ∣ 3 ) \rho = \frac{E_z}{4\pi}=\frac{q}{4\pi} \left( \frac{z- d}{|\vec r-\vec d_1|^3}-\frac{z+d}{|\vec r-\vec d_2|^3} \right) ρ=4πEz=4πq(r d 13zdr d 23z+d)

例1解决问题的方法被称为Image charge method或者割补法。

例2:均匀电场中的空心接地导电球

问题C:假设空间中存在均匀电场 ( 0 , 0 , E 0 ) (0,0,E_0) (0,0,E0),现在我们在空间中放入一个球心在 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)、半径为 a a a的空心接地导电球,计算导电球外部的电场 E ⃗ \vec{E} E

这个问题看上去也很简单,但现在空间中的电场依然是由原来的均匀电场与导电球形成的引致电场叠加成的,我们还是很难直接计算出引致电场,所以我们还是只能考虑用一些对称性来猜测这个问题的解。然而这个问题很难直接看出能不能直接用割补法,所以按照一般性思路,先列出Maxwell方程:

方程1:导电球外部不存在自由电荷或者自由电流密度,不存在source,所以适用Laplace方程
∇ 2 Φ = 0 \nabla^2 \Phi=0 2Φ=0

方程2:无穷远处的边界条件。不难发现在无穷远处引致电场已经非常小了,只剩下空间中原有的均匀电场,于是
lim ⁡ ∣ r ⃗ ∣ → ∞ E ⃗ = ( 0 , 0 , E 0 ) \lim_{|\vec r| \to \infty} \vec{E}=(0,0,E_0) r limE =(0,0,E0)

方程3:导电球接地。导电球球面上的静电势为0,也就是
Φ ( r ⃗ ) = 0 , ∣ r ⃗ ∣ = a \Phi(\vec r)=0,|\vec r|=a Φ(r )=0,r =a

简单分析一下这三个方程,空间中的电场是由导电球的引致电场与空间中的均匀电场的叠加,于是
Φ = Φ I − E 0 z \Phi = \Phi_I-E_0z Φ=ΦIE0z

其中 Φ I \Phi_I ΦI表示scalar potential of induced electric field;因为 Φ I \Phi_I ΦI是导电球在 z z z方向的均匀电场下激发的,我们不难确定它与 r r r相关,也与 r ⃗ \vec r r z z z方向的夹角 θ \theta θ有关,也就是
Φ I = A r α cos ⁡ θ \Phi_I=Ar^{\alpha}\cos \theta ΦI=Arαcosθ

这是我们用物理直觉想象出的引致电场静电势的形式(后续介绍了Green函数后这个形式在数学上就可以解释了)。在这个形式下,考虑方程3:
Φ ( r ⃗ ) = 0 , ∣ r ⃗ ∣ = a ⇒ A a α cos ⁡ θ − E 0 a cos ⁡ θ = 0 ⇒ A = E 0 a 1 − α \Phi(\vec r)=0,|\vec r|=a \\ \Rightarrow Aa^{\alpha}\cos \theta-E_0 a \cos \theta = 0 \Rightarrow A=E_0a^{1-\alpha} Φ(r )=0,r =aAaαcosθE0acosθ=0A=E0a1α

如果我们把直角坐标 ( x , y , z ) (x,y,z) (x,y,z)变换为球坐标 ( r , ξ , θ ) (r,\xi,\theta) (r,ξ,θ),其中 ξ \xi ξ表示经度, r , θ r,\theta r,θ对应我们这里使用的符号,根据对称性, Φ \Phi Φ ξ \xi ξ无关,于是我们使用球坐标下的Laplace方程:
1 r 2 ∂ ∂ r [ r 2 ( α A r α − 1 cos ⁡ θ − E 0 cos ⁡ θ ) ] + 1 r 2 sin ⁡ θ ∂ ∂ θ [ sin ⁡ θ ( − A r α sin ⁡ θ + E 0 r sin ⁡ θ ) ] = 0 \frac{1}{r^2} \frac{\partial }{\partial r}[r^2(\alpha Ar^{\alpha-1}\cos \theta-E_0 \cos \theta)] \\ + \frac{1}{r^2\sin \theta} \frac{\partial }{\partial \theta}[\sin \theta(-A r^{\alpha} \sin \theta+E_0r \sin \theta)]=0 r21r[r2(αArα1cosθE0cosθ)]+r2sinθ1θ[sinθ(Arαsinθ+E0rsinθ)]=0

这个方程最终化简为 α ( α + 1 ) = 2 \alpha(\alpha+1)=2 α(α+1)=2,于是 α = − 2 , α = 1 \alpha=-2,\alpha=1 α=2,α=1,后者不满足方程2,舍去,所以最终结果为
Φ = − E 0 r cos ⁡ θ ( 1 − a 3 r 3 ) \Phi = -E_0 r \cos \theta \left( 1-\frac{a^3}{r^3} \right) Φ=E0rcosθ(1r3a3)

这里关于 E 0 z E_0z E0z用了从直角坐标到球坐标的变换 z = r cos ⁡ θ z=r\cos \theta z=rcosθ

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页