UA PHYS515 电磁理论I 麦克斯韦方程组基础6 说明真空中电磁波传播速度等于光速

UA PHYS515 电磁理论I 麦克斯韦方程组基础6 说明真空中电磁波传播速度等于光速

上一讲我们总结了Maxwell方程在电动力学中的不同应用方法,麦克斯韦方程组基础部分也只剩下了Maxwell理论中最关键的结论——真空中电磁波的传播速度等于光速,这是一个数学上的结果,可以给我们提供一些证据,让我们相信光是一种电磁现象,这一讲我们来叙述这个结果。


介质中的Maxwell方程开始,
∇ ⋅ D ⃗ = 4 π ρ ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × H ⃗ − ∂ D ⃗ ∂ t = 4 π J ⃗ \nabla \cdot \vec{D} = 4\pi \rho \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{H}-\frac{\partial \vec{D}}{\partial t} = 4\pi \vec{J} D =4πρB =0×E =tB ×H tD =4πJ

我们对这个方程组做一些修正。在Biot-Savart定律中引入光速,
B ⃗ = Q v ⃗ × r ⃗ ∥ r ⃗ ∥ 2 3 c \vec{B}=\frac{Q\vec{v} \times \vec{r}}{\left\| \vec{r} \right\|_2^3c} B =r 23cQv ×r

这里的 c c c是一个标量,它的数值等于光在真空中的传播速度,无量纲;在Faraday定律中也引入光速
∮ l E ⃗ ⋅ d l ⃗ = − d Φ B d ( c t ) = − d d t ∫ S ( l ) B ⃗ c ⋅ d A ⃗ \oint_l \vec{E} \cdot d\vec{l} =-\frac{d\Phi_B}{d(ct)}=-\frac{d}{dt}\int_{S(l)}\frac{\vec{B}}{c} \cdot d\vec{A} lE dl =d(ct)dΦB=dtdS(l)cB dA

引入光速后,带电粒子速度可以被解释为xx倍光速。于是重复第二讲第四讲中的推导,Faraday定律导出的方程需要被修改为
∇ × E ⃗ = − ∂ B ⃗ ∂ ( c t ) \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial (ct)} ×E =(ct)B

第四个方程需要被修改为
∇ × H ⃗ − ∂ D ⃗ ∂ ( c t ) = 4 π c J ⃗ \nabla \times \vec{H}-\frac{\partial \vec{D}}{\partial (ct)} = \frac{4\pi}{c} \vec{J} ×H (ct)D =c4πJ


在这个引入了光速这个常数的Maxwell方程中,我们继续第五讲来讨论电磁波问题。假设 ρ = 0 , J ⃗ = 0 \rho = 0,\vec{J}=0 ρ=0,J =0,在各向同性介质中,
D ⃗ = ϵ E ⃗ B ⃗ = μ H ⃗ \vec{D} = \epsilon \vec{E} \\ \vec{B} = \mu \vec{H} D =ϵE B =μH 其中 ϵ , μ \epsilon,\mu ϵ,μ分别是介电常数与磁导率,电磁波问题需要下面两个方程:
( 1 ) : ∇ × E ⃗ = − ∂ B ⃗ ∂ ( c t ) ( 2 ) : ∇ × B ⃗ = μ ϵ c ∂ E ⃗ ∂ t (1):\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial (ct)} \\ (2): \nabla \times \vec{B}=\frac{\mu \epsilon}{c} \frac{\partial \vec{E}}{\partial t} (1):×E =(ct)B (2):×B =cμϵtE

考虑
μ ϵ c ∂ ∂ t ( 1 ) + ∇ × ( 2 ) ⇒ ∇ × ( ∇ × B ⃗ ) + ∂ ∂ t ( μ ϵ c ∇ × E ⃗ ) = μ ϵ c ∇ × ∂ ∂ t E ⃗ − μ ϵ c 2 ∂ 2 B ⃗ ∂ t 2 Δ B ⃗ − μ ϵ c 2 ∂ 2 B ⃗ ∂ t 2 = 0 \frac{\mu \epsilon}{c} \frac{\partial }{\partial t}(1)+\nabla \times (2) \\ \Rightarrow \nabla \times (\nabla \times \vec{B})+ \frac{\partial }{\partial t} (\frac{\mu \epsilon}{c} \nabla \times \vec{E})=\frac{\mu \epsilon}{c} \nabla \times \frac{\partial }{\partial t} \vec{E}-\frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} \\ \Delta \vec{B}-\frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}=0 cμϵt(1)+×(2)×(×B )+t(cμϵ×E )=cμϵ×tE c2μϵt22B ΔB c2μϵt22B =0

第二行到第三行同样用了场论恒等式+Coulomb Gauge,最后可以得到磁感应的wave equation,用复指数形式表达磁感应,磁感应的wave equation的解为
B ⃗ = B 0 e i ( k ⃗ ⋅ r ⃗ − w t ) \vec{B} = B_0e^{i(\vec{k}\cdot \vec{r}-wt)} B =B0ei(k r wt)

并且常数满足(dispersion equation)
k ⃗ 2 − μ ϵ c 2 w 2 = 0 \vec{k}^2-\frac{\mu \epsilon}{c^2} w^2=0 k 2c2μϵw2=0

其中 k ⃗ \vec{k} k 表示wave vector, w w w表示angular frequency ( 2 π 2\pi 2π除以周期),定义 ∥ v ⃗ ∥ = c μ ϵ \left\|\vec{v}\right\|=\frac{c}{\sqrt{\mu \epsilon}} v =μϵ c,则上式可以写成
∥ k ⃗ ∥ = w ∥ v ⃗ ∥ \left\|\vec{k} \right\|=\frac{w}{\left\|\vec{v}\right\|} k =v w

这里的 ∥ v ⃗ ∥ \left\|\vec{v}\right\| v 就是电磁波的传播速度,在真空中, μ = ϵ = 1 \mu=\epsilon=1 μ=ϵ=1,因此
∥ v ⃗ ∥ = c \left\|\vec{v}\right\| = c v =c

相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页