UA PHYS515 电磁理论I 麦克斯韦方程组基础5 电动力学的四类问题与对应的麦克斯韦方程

UA PHYS515 电磁理论I 麦克斯韦方程组基础5 电动力学的四类问题与对应的麦克斯韦方程

电动力学问题通常被分为四类:

  1. Electrostatics(静电学)
  2. Magnetostatics(静磁学)
  3. Electromagnetic wave(电磁波)
  4. General Case(一般情况)

之所以要进行这样的分类是因为相同类别的问题需要的数学技巧是类似的,从第一类到第四类需要用到的Maxwell方程越来越多,并且形式越来越完整,因此我们会按照顺序逐一介绍相应问题的建模与计算方法。

Electrostatics

如果 B ⃗ = 0 , H ⃗ = 0 \vec{B}=0,\vec{H}=0 B =0,H =0并且电场与电位移不随时间变化,我们称这样的问题叫静电学问题。回顾一下介质中的Maxwell方程:
∇ ⋅ D ⃗ = 4 π ρ ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × H ⃗ − ∂ D ⃗ ∂ t = 4 π J ⃗ \nabla \cdot \vec{D} = 4\pi \rho \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{H}-\frac{\partial \vec{D}}{\partial t} = 4\pi \vec{J} D =4πρB =0×E =tB ×H tD =4πJ

B ⃗ = H ⃗ = 0 \vec{B}=\vec{H}=0 B =H =0,则
∇ ⋅ D ⃗ = 4 π ρ ∇ × E ⃗ = 0 − ∂ D ⃗ ∂ t = 4 π J ⃗ \nabla \cdot \vec{D} = 4\pi \rho \\ \nabla \times \vec{E}=0 \\ -\frac{\partial \vec{D}}{\partial t} = 4\pi \vec{J} D =4πρ×E =0tD =4πJ

第二个方程说明此时的电场散度为0,即现在的电场是一个保守力场,因此存在电场的势能 Φ \Phi Φ,使得
E ⃗ = − ∇ Φ \vec{E} = - \nabla \Phi E =Φ

各向同性介质
在各向同性介质中, D ⃗ = ϵ E ⃗ \vec{D}=\epsilon \vec{E} D =ϵE ,所以
∇ ⋅ D ⃗ = ϵ ∇ ⋅ E ⃗ + ( ∇ ϵ ) ⋅ E ⃗ = ϵ ∇ ⋅ E ⃗ = 4 π ρ \nabla \cdot \vec{D}=\epsilon \nabla \cdot \vec{E}+(\nabla \epsilon) \cdot \vec{E}=\epsilon \nabla \cdot \vec{E}=4\pi \rho D =ϵE +(ϵ)E =ϵE =4πρ

代入势能
∇ 2 Φ = − 4 π ϵ ρ \nabla^2 \Phi = -\frac{4\pi}{\epsilon} \rho 2Φ=ϵ4πρ

这就是有名的Poisson方程;如果不存在自由电荷, ρ = 0 \rho = 0 ρ=0,则
∇ 2 Φ = Δ Φ = 0 \nabla^2 \Phi = \Delta \Phi= 0 2Φ=ΔΦ=0

这就是同样很有名的Laplace方程。

Magnetostatics

假设电场与电位移为0, B ⃗ \vec{B} B H ⃗ \vec{H} H 与时间无关, B ⃗ \vec{B} B 是magnetic induction, H ⃗ \vec{H} H 是magnetic field,在各向同性介质中
H ⃗ = μ ′ B ⃗ , μ ′ = 1 μ \vec{H}=\mu'\vec{B},\mu' = \frac{1}{\mu} H =μB ,μ=μ1

其中 μ \mu μ是磁导率,假设它是一个常数,我们只需要关注描述磁场的两个方程,则根据Ampere定律
∇ × H ⃗ = μ ′ ∇ × B ⃗ = 4 π J ⃗ ∇ × B ⃗ = 4 π μ J ⃗ \nabla \times \vec{H} =\mu' \nabla \times \vec{B}=4\pi \vec{J} \\ \nabla \times \vec{B}=4\pi \mu \vec{J} ×H =μ×B =4πJ ×B =4πμJ

用磁感应的向量势代替场,即 ∇ × A ⃗ = B ⃗ \nabla \times \vec{A}=\vec{B} ×A =B ,于是
∇ × ( ∇ × A ⃗ ) = 4 π μ J ⃗ \nabla \times (\nabla \times \vec{A})=4\pi \mu \vec{J} ×(×A )=4πμJ

根据场论恒等式
∇ × ( ∇ × A ⃗ ) = ∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ = 4 π μ J ⃗ \nabla \times (\nabla \times \vec{A})=\nabla (\nabla \cdot \vec{A})-\Delta \vec{A}=4\pi \mu \vec{J} ×(×A )=(A )ΔA =4πμJ

关于potential有一些很重要的性质,比如标量势加任一常数仍然是原来的标量势,向量势加任意函数的散度仍然是原来的向量势
− ∇ ( Φ + C 0 ) = − ∇ Φ ∇ × ( A ⃗ + ∇ ψ ) = ∇ × A ⃗ -\nabla (\Phi+C_0)=-\nabla \Phi \\ \nabla \times (\vec{A}+\nabla \psi)=\nabla \times \vec{A} (Φ+C0)=Φ×(A +ψ)=×A

基于第二个方程,我们可以开发简化上述方程的技术,这种技术被称为Coulomb’s Gauge(仅适用于三维空间静态问题,在四维时空中的扩展被称为Lorenz‘s Gauge):我们总是可以选择一个gauge,使得
∇ ⋅ ( A ⃗ + ∇ ψ ) = 0 = ∇ ⋅ A ⃗ + Δ ψ Δ ψ = − ∇ ⋅ A ⃗ \nabla \cdot (\vec{A}+\nabla \psi)=0=\nabla \cdot \vec{A}+\Delta \psi \\ \Delta \psi=-\nabla \cdot \vec{A} (A +ψ)=0=A +ΔψΔψ=A

这一个Poisson方程,在这个方程解出的gauge下,
∇ ( ∇ ⋅ ( A ⃗ + ∇ ψ ) ) = 0 \nabla (\nabla \cdot (\vec{A}+\nabla \psi))=0 ((A +ψ))=0

因为向量势关于不同gauge等价,所以记这时的向量势也为 A ⃗ \vec{A} A ,则
Δ A ⃗ = − 4 π μ J ⃗ \Delta \vec{A}=-4\pi \mu \vec{J} ΔA =4πμJ

综上,Magnetostatics问题需要的方程是势能形式的Maxwell方程:
Δ Φ = − 4 π ρ Δ A ⃗ = − 4 π μ J ⃗ \Delta \Phi=-4\pi \rho \\ \Delta \vec{A}=-4\pi \mu \vec{J} ΔΦ=4πρΔA =4πμJ

Electromagnetic wave

电磁波关注的是电磁场形成后的传播与演化,所以我们不需要charge,假设 ρ = 0 , J ⃗ = 0 \rho = 0,\vec{J}=0 ρ=0,J =0,所以
∇ ⋅ D ⃗ = 0 ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × H ⃗ − ∂ D ⃗ ∂ t = 0 \nabla \cdot \vec{D} = 0 \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{H}-\frac{\partial \vec{D}}{\partial t} = 0 D =0B =0×E =tB ×H tD =0

在各向同性介质中,
D ⃗ = ϵ E ⃗ B ⃗ = μ H ⃗ \vec{D} = \epsilon \vec{E} \\ \vec{B} = \mu \vec{H} D =ϵE B =μH

其中 ϵ , μ \epsilon,\mu ϵ,μ是常数,因此电磁波问题只需要下面两个方程:
( 1 ) : ∇ × E ⃗ = − ∂ B ⃗ ∂ t ( 2 ) : ∇ × B ⃗ = μ ϵ ∂ E ⃗ ∂ t (1):\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ (2): \nabla \times \vec{B}=\mu \epsilon \frac{\partial \vec{E}}{\partial t} (1):×E =tB (2):×B =μϵtE

与前两类问题类似,更简单的做法永远是把带旋度、散度的一阶偏微分方程方程化归为二阶偏微分方程,考虑
μ ϵ ∂ ∂ t ( 1 ) + ∇ × ( 2 ) ⇒ ∇ × ( ∇ × B ⃗ ) + ∂ ∂ t ( μ ϵ ∇ × E ⃗ ) = μ ϵ ∇ × ∂ ∂ t E ⃗ − μ ϵ ∂ 2 B ⃗ ∂ t 2 Δ B ⃗ − μ ϵ ∂ 2 B ⃗ ∂ t 2 = 0 \mu \epsilon \frac{\partial }{\partial t}(1)+\nabla \times (2) \\ \Rightarrow \nabla \times (\nabla \times \vec{B})+ \frac{\partial }{\partial t} (\mu \epsilon \nabla \times \vec{E})=\mu \epsilon \nabla \times \frac{\partial }{\partial t} \vec{E}-\mu \epsilon \frac{\partial^2 \vec{B}}{\partial t^2} \\ \Delta \vec{B}-\mu \epsilon \frac{\partial^2 \vec{B}}{\partial t^2}=0 μϵt(1)+×(2)×(×B )+t(μϵ×E )=μϵ×tE μϵt22B ΔB μϵt22B =0

第二行到第三行同样用了场论恒等式+Coulomb Gauge,最后可以得到磁感应的wave equation,不妨用复指数形式表达磁感应,磁感应的wave equation的解为
B ⃗ = B 0 e i ( k ⃗ ⋅ r ⃗ − w t ) \vec{B} = B_0e^{i(\vec{k}\cdot \vec{r}-wt)} B =B0ei(k r wt)

并且常数满足(dispersion equation)
k ⃗ 2 − μ ϵ w 2 = 0 \vec{k}^2-\mu \epsilon w^2=0 k 2μϵw2=0

基于这个结果可以说明光是一种电磁现象,我们在下一讲讨论这个问题。

一般情况

正如我们在Maxwell方程的势能形式那一讲所讨论的一样,Maxwell方程讨论的是source ( ρ , J ⃗ \rho,\vec{J} ρ,J ) 及其产生的电磁现象 ( A ⃗ , Φ ) (\vec{A},\Phi) (A ,Φ)的演化过程:
Δ Φ + ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − 4 π ρ ∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ + ∂ 2 A ⃗ ∂ 2 t + ∂ ∂ t ∇ Φ = 4 π J ⃗ \Delta \Phi+ \frac{\partial}{\partial t}( \nabla \cdot \vec{A})=-4\pi \rho \\ \nabla(\nabla \cdot \vec{A})-\Delta \vec{A}+\frac{\partial^2 \vec{A}}{\partial ^2 t}+\frac{\partial }{\partial t} \nabla \Phi=4\pi \vec{J} ΔΦ+t(A )=4πρ(A )ΔA +2t2A +tΦ=4πJ

这就是电磁学可以讨论的一般情况。此外,有时我们还需要电荷在电磁场中的受力:
F ⃗ = q E ⃗ + q v ⃗ × B ⃗ \vec{F}=q\vec{E}+q \vec{v} \times \vec{B} F =qE +qv ×B

数学框架

最后,我们可以把以上方程做一个数学上的抽象,明确在电磁理论中我们需要的数学技术。电磁理论可以抽象成下面的方程:
L u = f Lu=f Lu=f

其中
L = ∑ i j a i j ∂ 2 ∂ x i x j + ∑ k b k ∂ ∂ x k + c 0 L = \sum_{ij}a_{ij} \frac{\partial ^2}{\partial x_i x_j}+\sum_k b_k \frac{\partial }{\partial x_k}+c_0 L=ijaijxixj2+kbkxk+c0

u u u可以表示电场、电位移、磁感应、磁场或者电场标量势、磁场向量势等变量, f f f表示电磁场的source, ρ \rho ρ J ⃗ \vec{J} J 。根据算子 L L L的形式,我们可以对电磁理论的方程进行分类:

  • Elliptic: a i j > 0 a_{ij}>0 aij>0 (比如Laplace方程,需要关于 ∇ Φ \nabla \Phi Φ或者 Φ \Phi Φ的边界条件)
  • Hyperbolic: some of a i j a_{ij} aij is positive but some negative (比如波动方程,需要 u u u ∂ u ∂ t \frac{\partial u}{\partial t} tu t = 0 t=0 t=0时的边界条件)
  • Parabolic: some of a i j a_{ij} aij is zero but not all b k b_k bk is zero (比如薛定谔方程、扩散方程,需要 u u u t = 0 t=0 t=0时的边界条件与介质的性质,因为介质的性质会决定扩散的速率等常数)
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页