UA PHYS515 电磁理论I 麦克斯韦方程组基础3 麦克斯韦方程的势能形式

UA PHYS515 电磁理论I 麦克斯韦方程组基础3 麦克斯韦方程的势能形式

上一讲我们基于实验定律导出了真空中电磁场的Maxwell方程:

∇ ⋅ E ⃗ = 4 π ρ ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × B ⃗ = 4 π J ⃗ + ∂ E ⃗ ∂ t \nabla \cdot \vec{E}=4\pi \rho \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \times \vec{B}=4\pi \vec{J}+\frac{\partial \vec{E}}{\partial t} E =4πρB =0×E =tB ×B =4πJ +tE

同时我们也提到了Maxwell方程包含8个独立方程,但只有6个未知量 E ⃗ = ( E x , E y , E z ) \vec{E}=(E_x,E_y,E_z) E =(Ex,Ey,Ez)以及 B ⃗ = ( B x , B y , B z ) \vec{B}=(B_x,B_y,B_z) B =(Bx,By,Bz),所以从数学上看Maxwell方程是一个超定系统。尽管在数学上我们也是可以处理超定系统的,但我们更希望能用一些简单的、有物理学意义的reformulation把它变成正定系统。

定义电磁场的potential

我们可以定义电场与磁场的"potential",它们的"potential"可以使得Maxwell方程中的某些方程成为恒等式,这样我们就可以减少有效方程数目了。根据第二个方程,
∇ ⋅ B ⃗ = 0 \nabla \cdot \vec{B} = 0 B =0

引入 A ⃗ \vec{A} A 表示磁场的"potential"(上一讲的 d A ⃗ d\vec{A} dA 表示的是面积微元,方向为曲面的外法线方向),需要注意的是在场论中称这样的potential为vector potential,假设它满足
∇ × A ⃗ = B ⃗ \nabla \times \vec{A} = \vec{B} ×A =B

根据场论恒等式
∇ ⋅ ( ∇ × A ⃗ ) = 0 \nabla \cdot (\nabla \times \vec{A} )=0 (×A )=0

也就是说用"potential"表示磁场,则Maxwell方程组的第二个方程自然成立。将这种表示代入Maxwell方程的第三个方程中,
∇ × E ⃗ = − ∂ ∂ t ∇ × A ⃗ ∇ × ( E ⃗ + ∂ A ⃗ ∂ t ) = 0 \nabla \times \vec{E}=-\frac{\partial }{\partial t} \nabla \times \vec{A} \\ \nabla \times (\vec{E}+\frac{\partial \vec{A}}{\partial t})=0 ×E =t×A ×(E +tA )=0

根据场论恒等式,
∇ × ( ∇ f ) = 0 \nabla \times (\nabla f)=0 ×(f)=0

这里的 f f f表示任意scalar函数,于是 ∃ Φ \exists \Phi Φ,使得
E ⃗ = − ∂ A ⃗ ∂ t − ∇ Φ \vec{E}=-\frac{\partial \vec{A}}{\partial t}-\nabla \Phi E =tA Φ

这样我们就得到了电场与磁场的“potential”, A ⃗ , Φ \vec{A},\Phi A ,Φ,以及电场与磁场由“potential”表达的公式:
∇ × A ⃗ = B ⃗ E ⃗ = − ∂ A ⃗ ∂ t − ∇ Φ \nabla \times \vec{A} = \vec{B} \\ \vec{E}=-\frac{\partial \vec{A}}{\partial t}-\nabla \Phi ×A =B E =tA Φ

并且在"potential"的表示之下,Maxwell方程中第二个与第三个方程成为恒等式。

改写Maxwell方程

下面我们把电场与磁场代入Gauss方程:
∇ ⋅ E ⃗ = ∇ ⋅ ( − ∂ A ⃗ ∂ t − ∇ Φ ) = − Δ Φ − ∂ ∂ t ( ∇ ⋅ A ⃗ ) = 4 π ρ \nabla \cdot \vec{E}=\nabla \cdot(-\frac{\partial \vec{A}}{\partial t}-\nabla \Phi)=-\Delta \Phi - \frac{\partial}{\partial t}( \nabla \cdot \vec{A})=4\pi \rho E =(tA Φ)=ΔΦt(A )=4πρ

其中 Δ = ∇ ⋅ ∇ \Delta = \nabla \cdot \nabla Δ=,它是Laplace算子,所以
Δ Φ + ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − 4 π ρ \Delta \Phi+ \frac{\partial}{\partial t}( \nabla \cdot \vec{A})=-4\pi \rho ΔΦ+t(A )=4πρ

然后我们把电场与磁场代入Ampere定律中,
∇ × B ⃗ = ∇ × ( ∇ × A ⃗ ) = 4 π J ⃗ + ∂ ∂ t ( − ∂ A ⃗ ∂ t − ∇ Φ ) \nabla \times \vec{B}=\nabla \times (\nabla \times \vec{A})=4\pi \vec{J}+\frac{\partial }{\partial t} (-\frac{\partial \vec{A}}{\partial t}-\nabla \Phi) ×B =×(×A )=4πJ +t(tA Φ)

根据场论关系式,
∇ × ( ∇ × A ⃗ ) = ∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ \nabla \times (\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\Delta \vec{A} ×(×A )=(A )ΔA

所以
∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ = 4 π J ⃗ − ∂ 2 A ⃗ ∂ 2 t − ∂ ∂ t ∇ Φ \nabla(\nabla \cdot \vec{A})-\Delta \vec{A}=4\pi \vec{J}-\frac{\partial^2 \vec{A}}{\partial ^2 t}-\frac{\partial }{\partial t} \nabla \Phi (A )ΔA =4πJ 2t2A tΦ

于是
∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ + ∂ 2 A ⃗ ∂ 2 t + ∂ ∂ t ∇ Φ = 4 π J ⃗ \nabla(\nabla \cdot \vec{A})-\Delta \vec{A}+\frac{\partial^2 \vec{A}}{\partial ^2 t}+\frac{\partial }{\partial t} \nabla \Phi=4\pi \vec{J} (A )ΔA +2t2A +tΦ=4πJ

综上,我们可以把电场强度与磁场强度替换为磁场的向量势 A ⃗ \vec{A} A 与电场的某种势能 Φ \Phi Φ(四个未知量),这样Maxwell方程可以简化为
Δ Φ + ∂ ∂ t ( ∇ ⋅ A ⃗ ) = − 4 π ρ ∇ ( ∇ ⋅ A ⃗ ) − Δ A ⃗ + ∂ 2 A ⃗ ∂ 2 t + ∂ ∂ t ∇ Φ = 4 π J ⃗ \Delta \Phi+ \frac{\partial}{\partial t}( \nabla \cdot \vec{A})=-4\pi \rho \\ \nabla(\nabla \cdot \vec{A})-\Delta \vec{A}+\frac{\partial^2 \vec{A}}{\partial ^2 t}+\frac{\partial }{\partial t} \nabla \Phi=4\pi \vec{J} ΔΦ+t(A )=4πρ(A )ΔA +2t2A +tΦ=4πJ

这个方程组有4个自由方程,是一个正定系统,并且这个方程组右边表示电磁场的source,包括电荷密度 ρ \rho ρ与电流密度 J ⃗ = ( J x , J y , J z ) \vec{J}=(J_x,J_y,J_z) J =(Jx,Jy,Jz),等式左边包含方程组的未知量,磁场的向量势 A ⃗ = ( A x , A y , A z ) \vec{A}=(A_x,A_y,A_z) A =(Ax,Ay,Az)与电场的“势” Φ \Phi Φ

相关推荐
<p> <b><span style="font-size:14px;"></span><span style="font-size:14px;background-color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font-size:14px;">1、68讲视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font-size:14px;">2、这门课程基于胡书敏老师8年Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font-size:14px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font-size:14px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font-size:14px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【超人气讲师】</b></span><br /> <span style="font-size:14px;">胡书敏 | 10年大厂工作经验,8年Java面试官经验,5年线下Java职业培训经验,5年架构师经验</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font-size:14px;">上课模式是什么?</span><br /> <span style="font-size:14px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font-size:14px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-size:14px;">移动端:<span style="font-family:Helvetica;font-size:14px;background-color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页