概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用


上一讲我们介绍了Banach-Steinhaus定理:

Banach-Steinhaus定理(uniform boundedness principle)
假设 X X X是一个Banach空间, { A n } \{A_n\} {An}是可列个 X X X上的有界线性算子, ∀ x ∈ X \forall x \in X xX sup ⁡ n ≥ 1 ∥ A n x ∥ \sup_{n \ge 1} \left\| A_nx \right\| supn1Anx有界,则 sup ⁡ n ≥ 1 ∥ A n ∥ \sup_{n \ge 1} \left\| A_n \right\| supn1An有界;

这个定理是泛函分析中非常重要的一个工具,当我们需要用到一列有界线性算子的范数一致有界的结果时,我们就可以用这个定理。


推论1 假设 { A n } \{A_n\} {An}是Banach空间 X X X上的可列个连续线性算子,如果 ∀ x ∈ X \forall x \in X xX A n x A_nx Anx的极限存在,则 lim ⁡ n → ∞ A n \lim_{n \to \infty}A_n limnAn是有界线性算子;

证明
根据极限的线性性,不难验证 lim ⁡ n → ∞ A n \lim_{n \to \infty}A_n limnAn是线性算子,我们记 A = lim ⁡ n → ∞ A n A=\lim_{n \to \infty}A_n A=limnAn,则
∥ A x ∥ = ∥ lim ⁡ n → ∞ A n x ∥ = lim ⁡ n → ∞ ∥ A n x ∥ \left\| Ax \right\| = \left\| \lim_{n \to \infty}A_nx \right\|=\lim_{n \to \infty}\left\|A_nx \right\| Ax=nlimAnx=nlimAnx

因为 ∀ x ∈ X \forall x \in X xX A n x A_nx Anx的极限存在,所以 ∀ x ∈ X \forall x \in X xX sup ⁡ n ≥ 1 ∥ A n x ∥ \sup_{n \ge 1} \left\| A_nx \right\| supn1Anx有界,根据Banach-Steinhaus定理, A n A_n An的范数一致有界,不妨假设上界为 K K K,则
lim ⁡ n → ∞ ∥ A n x ∥ ≤ K ∥ x ∥ \lim_{n \to \infty}\left\|A_nx \right\| \le K\left\| x \right\| nlimAnxKx

所以 A A A是有界算子。


推论2 假设 A t , t ∈ ( 0 , 1 ] A_t,t \in (0,1] At,t(0,1]是一族有界线性算子,假设 ∀ x ∈ X \forall x \in X xX A t x A_tx Atx t → 0 t \to 0 t0处的极限存在,则 ∃ δ > 0 \exists \delta>0 δ>0 sup ⁡ 0 < t ≤ δ ∥ A t ∥ < ∞ \sup_{0<t \le \delta}\left\| A_t \right\|<\infty sup0<tδAt<

证明
与推论1相比,推论2讨论的是不可列的一族有界线性算子,它的难点在于我们的工具——Banach-Steinhaus定理——提供的是处理可列个有界线性算子的方法,所以我们的思路是把需要证明的结果离散化。

反证:假设 ∀ δ > 0 \forall \delta>0 δ>0 sup ⁡ 0 < t ≤ δ ∥ A t ∥ > ∞ \sup_{0<t \le \delta}\left\| A_t \right\|>\infty sup0<tδAt>,于是 ∀ n ∈ N \forall n \in \mathbb{N} nN ∃ t n < 1 / n \exists t_n<1/n tn<1/n,使得 ∥ A t n ∥ ≥ n \left\| A_{t_n} \right\| \ge n Atnn

现在我们看一下这个定理的条件, ∀ x ∈ X \forall x \in X xX A t x A_tx Atx t → 0 t \to 0 t0处的极限存在,则 A t n x A_{t_n}x Atnx的极限也存在,这说明 ∀ x ∈ X \forall x \in X xX A t n x A_{t_n}x Atnx有界,根据Banach-Steinhaus定理, A t n A_{t_n} Atn的范数一致有界,这就与反证的假设相悖了;


推论3 Y Y Y是Banach空间 X X X的紧子集,假设 A , A n , n ≥ 1 A,A_n,n \ge 1 A,An,n1 X → Z X \to Z XZ的有界线性算子,其中 Z Z Z是一个赋范线性空间, lim ⁡ n → ∞ A n x = A x \lim_{n \to \infty}A_nx = Ax limnAnx=Ax,则
lim ⁡ n → ∞ sup ⁡ y ∈ Y ∥ A n y − A y ∥ = 0 \lim_{n \to \infty} \sup_{y \in Y} \left\| A_ny-Ay \right\|=0 nlimyYsupAnyAy=0

证明
这个结论可以与数学分析中的相关结果对应起来: R \mathbb{R} R上的一列收敛的函数在 R \mathbb{R} R的任意有界闭集上是一致收敛的;

给定 ϵ > 0 \epsilon>0 ϵ>0,因为 Y Y Y是紧集,所以 ∃ k ∈ N \exists k \in \mathbb{N} kN ∃ y 1 , ⋯   , y k \exists y_1,\cdots,y_k y1,,yk使得 ∀ y ∈ Y \forall y \in Y yY ∃ y i ∈ { y 1 , ⋯   , y k } \exists y_i \in \{y_1,\cdots,y_k\} yi{y1,,yk}
∥ y − y i ∥ < ϵ 4 M , ∃ M > 0 \left\| y - y_i\right\| < \frac{\epsilon}{4M},\exists M>0 yyi<4Mϵ,M>0

lim ⁡ n → ∞ A n x = A x \lim_{n \to \infty}A_nx = Ax limnAnx=Ax说明所有的 A n x A_nx Anx有界,于是 A n A_n An的范数一致有界,用 M M M表示这个上界。估计 ∥ A n y − A y ∥ \left\| A_n y -Ay \right\| AnyAy
∥ A n y − A y ∥ ≤ ∥ A n y − A n y i ∥ + ∥ A n y i − A y i ∥ + ∥ A y i − A y ∥ ≤ ( ∥ A n ∥ + ∥ A ∥ ) max ⁡ i = 1 , ⋯   , k ∥ y − y i ∥ + max ⁡ i = 1 , ⋯   , k ∥ A n y i − A y i ∥ \left\| A_n y -Ay \right\| \le \left\| A_n y -A_ny_i \right\|+\left\| A_n y_i -Ay_i \right\|+\left\| A y_i -Ay \right\| \\ \le (\left\| A_n \right\|+\left\| A\right\|)\max_{i = 1,\cdots,k}\left\| y-y_i\right\|+\max_{i=1,\cdots,k}\left\| A_n y_i -Ay_i \right\| AnyAyAnyAnyi+AnyiAyi+AyiAy(An+A)i=1,,kmaxyyi+i=1,,kmaxAnyiAyi

第一项的上界为
2 M max ⁡ i = 1 , ⋯   , k ∥ y − y i ∥ < 2 M ϵ 4 M = ϵ 2 2M\max_{i = 1,\cdots,k}\left\| y-y_i\right\| < 2M \frac{\epsilon}{4M}=\frac{\epsilon}{2} 2Mi=1,,kmaxyyi<2M4Mϵ=2ϵ

因为 lim ⁡ n → ∞ A n x = A x , ∀ x ∈ X \lim_{n \to \infty}A_nx = Ax,\forall x \in X limnAnx=Ax,xX,于是在 n n n足够大时,我们可以把 max ⁡ i = 1 , ⋯   , k ∥ A n y i − A y i ∥ \max_{i=1,\cdots,k}\left\| A_n y_i -Ay_i \right\| maxi=1,,kAnyiAyi控制在 ϵ 2 \frac{\epsilon}{2} 2ϵ以内,于是

∥ A n y − A y ∥ < ϵ \left\| A_n y -Ay \right\|<\epsilon AnyAy<ϵ

<span style="color:#666666;font-size:14px;background-color:#FFFFFF;">这是一门简单易懂的概率论课程!</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">看教材学概率论实在是看不懂,教材编写者一般会认为教材有老师来解,所以自学教材会备受打击。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">本课程最大特色就是 简单易懂, “简单易懂”意味着我会用简单的语言,你容易听懂的语言教你概率知识,而不是让你越听越晕。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">没有概率论就没有统计学,也基本上就不存在机器学习了,从而人工智能也不会有今天这样的繁荣发展。如果要从事数据科学行业,不懂概率论或者对概率论一知半解,基本上都要回过头重新学习概率论,因为吃不透概率论就吃不透算法原理,也就只能永远半吊子,在数据科学行业半吊子那基本上就没有你的位置了。</span><br /> <br /> <span style="color:#666666;font-size:14px;background-color:#FFFFFF;">各位,还是沉下心来老老实实的把概率论认真的学好吧!别想着速成,速成只会浪费你更多的时间!当然了,找到一个好老师教你,的确可以让你比别人更快的学会学好,比如我的这门概率论教程!</span><br /> <br /> <p> <br /> </p>
相关推荐
<p> <b><span style="font-size:14px;"></span><span style="font-size:14px;background-color:#FFE500;">【Java面试宝典】</span></b><br /> <span style="font-size:14px;">1、68视频课,500道大厂Java常见面试题+100个Java面试技巧与答题公式+10万字核心知识解析+授课老师1对1面试指导+无限次回放</span><br /> <span style="font-size:14px;">2、这门课程基于胡书敏老师8年Java面试经验,调研近百家互联网公司及面试官的问题打造而成,从筛选简历和面试官角度,给出能帮助候选人能面试成功的面试技巧。</span><br /> <span style="font-size:14px;">3、通过学习这门课程,你能系统掌握Java核心、数据库、Java框架、分布式组件、Java简历准备、面试实战技巧等面试必考知识点。</span><br /> <span style="font-size:14px;">4、知识点+项目经验案例,每一个都能做为面试的作品展现。</span><br /> <span style="font-size:14px;">5、本课程已经在线下的培训课程中经过实际检验,老师每次培训结束后,都能帮助同学们运用面试技巧,成功找到更好的工作。</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【超人气师】</b></span><br /> <span style="font-size:14px;">胡书敏 | 10年大厂工作经验,8年Java面试官经验,5年线下Java职业培训经验,5年架构师经验</span><br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><b>【报名须知】</b></span><br /> <span style="font-size:14px;">上课模式是什么?</span><br /> <span style="font-size:14px;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-size:14px;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-size:14px;background-color:#FFE500;"><strong>如何开始学习?</strong></span><br /> <span style="font-size:14px;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-size:14px;">移动端:<span style="font-family:Helvetica;font-size:14px;background-color:#FFFFFF;">CSDN 学院APP(注意不是CSDN APP哦)</span></span> </p>
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页