UA PHYS515 电磁理论I 麦克斯韦方程组基础1 库仑定律与毕奥-萨伐尔定律

UA PHYS515 电磁理论I 麦克斯韦方程组基础1 库仑定律与毕奥-萨伐尔定律

写在前面

电磁理论是物理学中最优美的理论之一,因为它完备又精确,因此无论你是否正在学习物理,都应该来了解一下电磁理论,看看Maxwell方程,理解它为什么可以准确地描述电磁现象。

这个系列的博客是俺笔记的翻译,是俺学校做宇宙理论的Fulvio Melia老教授的课,他有自己的电动力学的教材,就叫electrodynamics,他的课就是按他的教材来讲的。这个教材有八章,一学年上完,每学期讲四章。因为Maxwell方程不是通过物理理论建立的模型,而是把一些实验定律总结起来形成的描述电磁场的方程组,这些实验定律分为两类,一类是描述电场与磁场如何形成与演化的,另一类是描述电场与磁场怎么对电子产生作用的,第一章就是介绍相关的实验定律,然后总结得到Maxwell方程,并且介绍一些理解与应用Maxwell方程的数学知识。第二章介绍用Maxwell方程处理静电场与静磁场问题的方法;第三章介绍用Maxwell处理时变电场与磁场的方法;第四章介绍电磁波与辐射,但是是简化的版本,因为电磁波传播速度是光速级别的,所以要准确描述电磁波需要相对论,第五章到第七章就是引入相对论工具来研究电磁现象,第八章是一些电磁理论的专题。

以上都是经典电动力学的内容,经典电动力学的思路是电磁场由电荷产生,而电磁场在演化过程中又会反过来作用于电荷,于是就形成了电荷与电磁场互相影响的复杂系统。量子电动力学则认为电磁场自身也是含有电荷的,所以量子电动力学的相关方程更加复杂。


这一讲我们介绍Coulomb定律与Biot-Savart定律,虽然大家从高二开始就在学习这些内容,但我们还是要回顾总结一下并且试图挖掘一些新的信息。

Coulomb定律与电场

先说场(field)这个概念,它指的是四维时空中连续变化的物理量,比如某种材料的温度场是一个标量场,指的是这种材料每个位置的温度分布规律;某个刚体的速度场是一个矢量场,指的是这个刚体每个位置的速度分布规律。但是温度与速度都是我们能够以某种方法观察到的,甚至直接就能用肉眼看到的,那么对于电场这种比较抽象的东西又如何观测呢?

首先它是一个场,说明它是某个在四维时空中连续变化的物理量,我们用电场强度表示它,记为 E ⃗ ( r ⃗ , t ) \vec{E}(\vec{r},t) E (r ,t)。我们用一个电荷量为 q q q的测试电荷(test charge)放在电场中位置为 r ⃗ \vec{r} r 的地方,如果它受到的静电力为 F ⃗ \vec{F} F ,则
E ⃗ ( r ⃗ , t ) = lim ⁡ q → 0 F ⃗ q \vec{E}(\vec{r},t) = \lim_{q \to 0} \frac{\vec{F}}{q} E (r ,t)=q0limqF

这个定义与大家高中接触的有所不同,高中的定义是 F ⃗ / q \vec{F}/q F /q,这里加了一个极限有两个好处:

  1. F ⃗ / q \vec{F}/q F /q的作用是去掉电荷的影响,因为电场的存在是客观的,去掉这个测试电荷之后电场还在;
  2. 取极限的作用是我们希望测试电荷足够小以至于对这个客观存在的电场不会造成我们无法预知的影响;

Coulomb定律是一个实验定律,它回答了静电场如何对电荷施加力,考虑由静止电荷 Q Q Q产生的电场,在位移为 r ⃗ \vec{r} r 的地方的测试电荷 q q q受到的力为
F ⃗ = q Q r ⃗ 2 r ⃗ ∥ r ⃗ ∥ 2 \vec{F} = \frac{qQ}{\vec{r}^2}\frac{\vec{r}}{\left\| \vec{r}\right\|_2} F =r 2qQr 2r

Coulomb认为静电场对电荷产生的力只与这两个电荷及其相对位置有关,但Faraday用实验说明了电场力的作用需要电介质(dielectric),Maxwell基于Faraday的实验结论引入了stress-energy tensor来表示电介质对电场力的影响。

Biot-Savart定律与磁场

如果是运动电荷,那么在它的运动过程中还会产生磁场,毕奥-萨伐尔通过实验总结出了匀速运动的电荷产生的磁场的磁场强度公式:
B ⃗ = Q v ⃗ × r ⃗ r ⃗ 2 ∥ r ⃗ ∥ 2 \vec{B}=\frac{Q\vec{v} \times \vec{r}}{\vec{r}^2\left\| \vec{r}\right\|_2} B =r 2r 2Qv ×r

这里的 v ⃗ \vec{v} v 是这个运动电荷的速度, Q Q Q是它带的电荷量。

Lorenz通过实验说明了磁场力的存在,并发现同时存在电场与磁场时,运动电荷受到的力的作用的规律,也就是我们熟悉的洛伦兹力,
F ⃗ = q ( E ⃗ + v ⃗ × B ⃗ ) \vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) F =q(E +v ×B )

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页