UA MATH563 概率论的数学基础 中心极限定理17 0-1律的应用

UA MATH563 概率论的数学基础 中心极限定理17 0-1律的应用

第14讲到第16讲我们介绍了Kolmogorov非常著名的几大定理(如下),事实上Kolmogorov开发出这些定理的目标是证明强大数定律(第十二讲):
强大数定律(SLLN by Kolmogorov) 假设 X 1 , ⋯   , X n , n ≥ 1 X_1,\cdots,X_n,n\ge 1 X1,,Xn,n1是iid的随机变量, E ∣ X 1 ∣ < ∞ E|X_1|<\infty EX1<,则
X ˉ → a s E X 1 \bar X \to_{as} EX_1 XˉasEX1

显然根据Kolmogorov 3-series Theorem,我们很容易就能得到这个结果。但Kolmogorov开发出的这些定理在实践中都具有非常广泛的应用,这一讲我们介绍一个例题。

Kolmogorov maximal inequality
假设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn是独立的随机变量,并且 E X i = 0 , V a r X i < ∞ EX_i=0,Var X_i<\infty EXi=0,VarXi<,则
P ( max ⁡ 1 ≤ k ≤ n ∣ S k ∣ ≥ x ) ≤ V a r ( S n ) x 2 P(\max_{1 \le k \le n} |S_k| \ge x) \le \frac{Var(S_n)}{x^2} P(1knmaxSkx)x2Var(Sn)

其中
S k = ∑ i = 1 k X i S_k = \sum_{i=1}^k X_i Sk=i=1kXi

Kolmogorov 0-1律
假设 { X j } j ≥ 1 \{X_j\}_{j \ge 1} {Xj}j1独立,则 τ \tau τ是一个trivial σ \sigma σ-代数,即
∀ A ∈ τ , P ( A ) = 0   o r   1 \forall A \in \tau,P(A)=0\ or \ 1 Aτ,P(A)=0 or 1

Kolmogorov 3-series Theorem
假设 { X i } i ≥ 1 \{X_i\}_{i \ge 1} {Xi}i1独立, A > 0 A > 0 A>0,定义 Y i = X i 1 ∣ X i ∣ ≤ A Y_i = X_i1_{|X_i| \le A} Yi=Xi1XiA,则 ∑ n ≥ 1 X n \sum_{n \ge 1}X_n n1Xn几乎必然收敛的充要条件是:

  1. ∑ n ≥ 1 P ( ∣ X n ∣ > A ) < ∞ \sum_{n \ge 1}P(|X_n| > A)<\infty n1P(Xn>A)<
  2. ∑ n ≥ 1 E [ Y n ] \sum_{n \ge 1}E[Y_n] n1E[Yn]收敛
  3. ∑ n ≥ 1 V a r ( Y n ) \sum_{n \ge 1}Var(Y_n) n1Var(Yn)收敛

例1
假设 Y i Y_i Yi是独立的Bernoulli随机变量, P ( Y i = 1 ) = p i , P ( Y i = 0 ) = 1 − p i P(Y_i=1)=p_i,P(Y_i=0)=1-p_i P(Yi=1)=pi,P(Yi=0)=1pi, p i = 1 / i , i ≥ 1 p_i=1/i,i\ge 1 pi=1/i,i1 ∑ i ≥ 1 Y i \sum_{i \ge 1}Y_i i1Yi会几乎必然收敛吗?

方法一:
我们先用Kolmogorov 0-1律分析,因为 ∑ i ≥ 1 Y i \sum_{i \ge 1}Y_i i1Yi τ \tau τ-可测的,于是 ∑ i ≥ 1 Y i \sum_{i \ge 1}Y_i i1Yi依概率1收敛或者依概率1发散。我们需要确定就是到底是哪一种情况。

A i = { Y i = 1 } A_i=\{Y_i=1\} Ai={Yi=1},则 A i A_i Ai是独立事件,因为
∑ P ( A i ) = ∑ P ( Y i = 1 ) = ∑ 1 / i = ∞ \sum P(A_i) = \sum P(Y_i=1) = \sum 1/i = \infty P(Ai)=P(Yi=1)=1/i=

(Borel-Cantelli引理2 如果 A n A_n An互相独立,且 ∑ n ≥ 1 P ( A n ) = ∞ \sum_{n \ge 1}P(A_n) = \infty n1P(An)=,则 P ( A n   i . o . ) = 1 P(A_n\ i.o.)=1 P(An i.o.)=1)

根据Borel-Cantelli引理2,
P ( A i   i . o . ) = 1 P(A_i\ i.o.)=1 P(Ai i.o.)=1

于是 { Y i } \{Y_i\} {Yi}的realization中无限个1,因此 ∑ i ≥ 1 Y i \sum_{i \ge 1}Y_i i1Yi依概率1发散。

方法二:
∑ P ( ∣ Y n ∣ > 1 ) = 0 ∑ n E [ Y n ] = ∑ 1 / n = ∞ ∑ V a r ( Y n ) = ∑ n − 1 n 2 = ∞ \sum P(|Y_n|>1) = 0 \\ \sum_n E[Y_n]=\sum 1/n=\infty \\ \sum Var(Y_n) = \sum \frac{n-1}{n^2} = \infty P(Yn>1)=0nE[Yn]=1/n=Var(Yn)=n2n1=

于是,根据Kolmogorov 3-series Theorem, ∑ n Y n \sum_n Y_n nYn依概率1发散。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页