UA MATH563 概率论的数学基础 中心极限定理2 sigma代数的独立性与随机变量的独立性

UA MATH563 概率论的数学基础 中心极限定理2 sigma代数的独立性与随机变量的独立性

这一讲我们在测度论的level对独立性进行定义。考虑 X : ( Ω , F , P ) → ( R , B ( R ) ) X:(\Omega,\mathcal{F},P) \to (\mathbb{R},\mathcal{B}(\mathbb{R})) X:(Ω,F,P)(R,B(R)),定义 X X X生成的 σ \sigma σ-代数为
σ ( X ) = { X − 1 ( B ) : B ∈ B ( R ) } ⊂ F \sigma(X)=\{X^{-1}(B):B \in \mathcal{B}(\mathbb{R})\}\subset \mathcal{F} σ(X)={X1(B):BB(R)}F

回顾一下事件独立性的定义, ∀ A , B ∈ F \forall A,B \in \mathcal{F} A,BF,则 A A A B B B独立意味着
P ( A ∩ B ) = P ( A ) P ( B ) P ( A ∣ B ) = P ( A ) , P ( B ∣ A ) = P ( B ) P(A \cap B) = P(A)P(B) \\ P(A|B)=P(A), P(B|A)=P(B) P(AB)=P(A)P(B)P(AB)=P(A),P(BA)=P(B)

我们的目标是基于这个定义进行推广,获得一系列事件独立性的含义、 σ \sigma σ-代数独立性的含义以及随机变量独立性的含义。

σ \sigma σ-代数的独立性
假设 F n \mathcal{F}_n Fn F \mathcal{F} F的一列子 σ \sigma σ-代数,称它们互相独立如果 ∀ n ∈ N \forall n \in \mathbb{N} nN ∀ A n ∈ F n \forall A_n \in \mathcal{F}_n AnFn
P ( ⋂ n A n ) = ∏ n P ( A n ) P(\bigcap_{n}A_n) = \prod_n P(A_n) P(nAn)=nP(An)

随机变量的独立性
假设 X n X_n Xn是一个随机变量序列,称它们互相独立如果 σ ( X n ) \sigma(X_n) σ(Xn)互相独立。

根据这些套路,我们可以进一步把一系列事件的独立性定义为它们的indicator function互相独立。

下面我们讨论两两独立(Pairwise independence),这是一个与独立性非常相似但实际上并不等价的定义,事实上它比独立更弱,独立一定可以推出两两独立但两两独立并不能推出独立。我们来看一下两两独立但不完全独立的例子:

考虑抛两次硬币的试验,记 A 1 A_1 A1表示第一次正面朝上的事件、 A 2 A_2 A2表示第二次正面朝上的事件、 A 3 A_3 A3表示一次正面朝上一次背面朝上的事件,则
P ( A 1 ∩ A 2 ) = 1 4 , P ( A 1 ) = 1 2 , P ( A 2 ) = 1 2 P(A_1 \cap A_2) = \frac{1}{4}, P(A_1) = \frac{1}{2}, P(A_2) = \frac{1}{2} P(A1A2)=41,P(A1)=21,P(A2)=21

于是 A 1 A_1 A1 A 2 A_2 A2独立,类似的,我们可以得到 A 1 , A 3 A_1,A_3 A1,A3, A 2 , A 3 A_2,A_3 A2,A3两两独立;然而
P ( A 1 ∩ A 2 ∩ A 3 ) = 0 ≠ P ( A 1 ) P ( A 2 ) P ( A 3 ) = 1 8 P(A_1 \cap A_2 \cap A_3) = 0 \ne P(A_1)P(A_2)P(A_3) = \frac{1}{8} P(A1A2A3)=0=P(A1)P(A2)P(A3)=81


那么现在就出现了一个有趣的问题,如果判断多个事件、 σ \sigma σ-代数或者随机变量是独立的呢?要判断多个事件是独立的难度不大,我们可以尝试根据定义进行验证,真正的难点在于如何判断 σ \sigma σ-代数是独立的。即使只判断两个 σ \sigma σ-代数 A 1 , A 2 \mathcal{A}_1,\mathcal{A}_2 A1,A2的独立性,我们也需要对它们的元素进行两两比较,也就是需要进行 ∣ A 1 ∣ × ∣ A 2 ∣ |\mathcal{A}_1| \times |\mathcal{A}_2| A1×A2次比较,如果其中一个是无限集,那么这种比较就是不可能完成的。但好在下面的定理给出了判断 σ \sigma σ-代数的独立性:

定理 假设 A i , 1 ≤ i ≤ n \mathcal{A}_i,1 \le i \le n Ai,1in是一列独立的 π \pi π-类,则 σ ( A i ) , 1 ≤ i ≤ n \sigma(A_i),1 \le i \le n σ(Ai),1in独立。

说明
在实分析中我们讨论过常用的集族,假设 Ω \Omega Ω是一个非空集合, C \mathcal{C} C Ω \Omega Ω上的一个集族(元素为集合的集合),关于 π \pi π-类、 λ \lambda λ-类的定义和相关结果如下:

π \pi π-类( π \pi π-system):对交封闭 ∀ A , B ∈ C , A ∩ B ∈ C \forall A,B \in \mathcal{C}, A \cap B \in \mathcal{C} A,BC,ABC

λ \lambda λ-类( λ \lambda λ-system)
1) Ω ∈ C \Omega \in \mathcal{C} ΩC
2) A , B ∈ C A,B \in \mathcal{C} A,BC, B ⊂ A B \subset A BA, A ∖ B ∈ C A \setminus B \in \mathcal{C} ABC
3) A n ∈ C , ∀ n ≥ 1 , A n ↑ A A_n \in \mathcal{C},\forall n \ge 1,A_n \uparrow A AnC,n1,AnA, A ∈ C A \in \mathcal{C} AC

Dynkin’s π − λ \pi-\lambda πλ theorem: 如果 P \mathcal{P} P是一个 π \pi π-类, L \mathcal{L} L是一个 λ \lambda λ-类并且 P ⊂ L \mathcal{P} \subset \mathcal{L} PL,则 σ ( P ) ⊂ L \sigma(\mathcal{P}) \subset \mathcal{L} σ(P)L

如果 C \mathcal{C} C π \pi π-类,则 λ ( C ) = σ ( C ) \lambda(\mathcal{C}) = \sigma(\mathcal{C}) λ(C)=σ(C)

我们将用这些结果来证明这个定理,思路是从每个 A i \mathcal{A}_i Ai中任取一个集合,定义与它们的交集独立的集合组成一个集列,证明这个集列是 λ \lambda λ-类并用Dynkin’s π − λ \pi-\lambda πλ theorem证明这个集列包含 σ ( A i ) \sigma(\mathcal{A}_i) σ(Ai),这样就得到了 σ ( A i ) \sigma(\mathcal{A}_i) σ(Ai)独立。

证明
∀ 1 ≤ i ≤ n \forall 1 \le i \le n 1in,取 A i ∈ A i A_i \in \mathcal{A}_i AiAi,定义 F = ⋂ i = 1 n A i F = \bigcap_{i=1}^n A_i F=i=1nAi L = { A : P ( A ∩ F ) = P ( A ) P ( F ) } \mathcal{L}=\{A:P(A \cap F)=P(A)P(F)\} L={A:P(AF)=P(A)P(F)}

第一步:说明 L \mathcal{L} L是一个 λ \lambda λ-类。
(i) 显然 Ω ∩ F = F \Omega \cap F=F ΩF=F,于是
P ( Ω ∩ F ) = P ( F ) = P ( Ω ) P ( F ) P(\Omega \cap F) = P(F) = P(\Omega)P(F) P(ΩF)=P(F)=P(Ω)P(F)

所以 Ω ∈ L \Omega \in \mathcal{L} ΩL

(ii) A , B ∈ L A,B \in \mathcal{L} A,BL, B ⊂ A B \subset A BA,
P ( ( A ∖ B ) ∩ F ) = P ( A ∩ F ∖ B ∩ F ) = P ( A ∩ F ) − P ( B ∩ F ) = P ( A ) P ( F ) − P ( B ) P ( F ) = P ( A ∖ B ) P ( F ) P((A \setminus B) \cap F) = P(A \cap F \setminus B \cap F)=P(A \cap F)-P(B \cap F) \\ = P(A)P(F)-P(B)P(F) = P(A \setminus B) P(F) P((AB)F)=P(AFBF)=P(AF)P(BF)=P(A)P(F)P(B)P(F)=P(AB)P(F)

所以 A ∖ B ∈ L A \setminus B \in \mathcal{L} ABL

(iii) A n ∈ L , ∀ n ≥ 1 , A n ↑ A A_n \in \mathcal{L},\forall n \ge 1,A_n \uparrow A AnL,n1,AnA,则 A = ⋃ n ≥ 1 A n = ⨆ n ≥ 1 ( A n + 1 ∖ A n ) A = \bigcup_{n \ge 1}A_n=\bigsqcup_{n \ge 1}(A_{n+1} \setminus A_{n}) A=n1An=n1(An+1An)

P ( A ∩ F ) = P ( ⨆ n ≥ 1 ( A n + 1 ∖ A n ) ∩ F ) = P ( ⨆ n ≥ 1 ( A n + 1 ∩ F ) ∖ ⨆ n ≥ 1 ( A n ∩ F ) ) = P ( F ) ∑ n ≥ 1 [ P ( A n + 1 ) − P ( A n ) ] = P ( F ) P ( ⨆ n ≥ 1 ( A n + 1 ∖ A n ) ) = P ( F ) P ( A ) P(A \cap F) = P(\bigsqcup_{n \ge 1}(A_{n+1} \setminus A_{n}) \cap F) \\ = P(\bigsqcup_{n \ge 1}(A_{n+1} \cap F) \setminus \bigsqcup_{n \ge 1}(A_{n} \cap F)) \\ =P(F) \sum_{n \ge 1}[P(A_{n+1})-P(A_n)] \\= P(F)P(\bigsqcup_{n \ge 1}(A_{n+1} \setminus A_{n}))=P(F)P(A) P(AF)=P(n1(An+1An)F)=P(n1(An+1F)n1(AnF))=P(F)n1[P(An+1)P(An)]=P(F)P(n1(An+1An))=P(F)P(A)

所以 A ∈ L A \in \mathcal{L} AL

综上, L \mathcal{L} L是一个 λ \lambda λ-类。

第二步:根据Dynkin’s π − λ \pi-\lambda πλ theorem,说明 σ ( A i ) ⊂ L \sigma(\mathcal{A}_i) \subset \mathcal{L} σ(Ai)L
∀ B i ∈ A i \forall B_i \in \mathcal{A}_i BiAi B i B_i Bi F F F的除了 A i A_i Ai外每个分量都是独立的,因此 B i B_i Bi F F F独立,所以 B i ∈ L B_i \in \mathcal{L} BiL,于是根据Dynkin’s π − λ \pi-\lambda πλ theorem, σ ( A i ) ⊂ L \sigma(\mathcal{A}_i) \subset \mathcal{L} σ(Ai)L

根据 L \mathcal{L} L的定义即可验证 σ ( A i ) \sigma(\mathcal{A}_i) σ(Ai)独立。

证毕

评注
这个定理非常有用,它提供了检验验证独立性流程的一般性思路,即找一个能生成待验证的 σ \sigma σ-代数的 π \pi π-类即可,下一讲我们来讨论如何用这个定理导出一元随机变量的独立性的判断方法、并导出一元随机变量独立性的相关性质。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页