UA MATH566 用Basu定理证明统计量不完备

UA MATH566 用Basu定理证明统计量不完备

Basu定理:有界完备最小充分统计量与辅助统计量独立。我们先简单证明一下这个定理,记有界完备最小充分统计量为 T ( X ) T(X) T(X),辅助统计量为 A ( X ) A(X) A(X),则要证明二者独立,只需要
P X { A ( X ) ∈ B ∣ T ( X ) = t } = P X { A ( X ) ∈ B } , B 是 B o r e l 集 P_X\{A(X) \in B|T(X)=t\} = P_X\{A(X) \in B\},B是Borel集 PX{A(X)BT(X)=t}=PX{A(X)B}BBorel
其中
P X { A ( X ) ∈ B ∣ T ( X ) = t } = P X { X ∈ A − 1 ( B ) ∣ T ( X ) = t } P X { A ( X ) ∈ B } = P X { X ∈ A − 1 ( B ) } P_X\{A(X) \in B|T(X)=t\} = P_X\{X \in A^{-1}(B)|T(X)=t\} \\ P_X\{A(X) \in B\}=P_X\{X \in A^{-1}(B)\} PX{A(X)BT(X)=t}=PX{XA1(B)T(X)=t}PX{A(X)B}=PX{XA1(B)}
P X { X ∈ A − 1 ( B ) } = p P_X\{X \in A^{-1}(B)\} =p PX{XA1(B)}=p,因为 P X { X ∈ A − 1 ( B ) ∣ T ( X ) = t } = E X [ I A − 1 ( B ) ( X ) ∣ T ( X ) = t ] P_X\{X \in A^{-1}(B)|T(X)=t\} =E_X[I_{A^{-1}(B)}(X)|T(X)=t] PX{XA1(B)T(X)=t}=EX[IA1(B)(X)T(X)=t],相当于需要证明
E X [ I A − 1 ( B ) ( X ) ∣ T ( X ) = t ] = p E_X[I_{A^{-1}(B)}(X)|T(X)=t]=p EX[IA1(B)(X)T(X)=t]=p
定义 h ( t ) = E X [ I A − 1 ( B ) ( X ) ∣ T ( X ) = t ] − p h(t)=E_X[I_{A^{-1}(B)}(X)|T(X)=t]-p h(t)=EX[IA1(B)(X)T(X)=t]p,计算
E [ h ( T ) ] = E T E X [ I A − 1 ( B ) ( X ) ∣ T ( X ) = t ] − p = E X [ I A − 1 ( B ) ( X ) ] − p E[h(T)]=E_T E_X[I_{A^{-1}(B)}(X)|T(X)=t]-p = E_X[I_{A^{-1}(B)}(X)]-p E[h(T)]=ETEX[IA1(B)(X)T(X)=t]p=EX[IA1(B)(X)]p
因为 E X [ I A − 1 ( B ) ( X ) ] = P X { X ∈ A − 1 ( B ) } = p E_X[I_{A^{-1}(B)}(X)]=P_X\{X \in A^{-1}(B)\} =p EX[IA1(B)(X)]=PX{XA1(B)}=p,因此 E [ h ( T ) ] = 0 E[h(T)]=0 E[h(T)]=0,根据 T T T的完备性, h ( t ) = 0   a . s . h(t)=0\ a.s. h(t)=0 a.s.,定理得证。

根据Basu定理,要证明某个最小充分统计量不完备,只需要找到它与某个辅助统计量不独立的反例即可。

辅助统计量:分布与参数无关的统计量,位置参数族样本的差就是辅助统计量,尺度参数族样本的商就是辅助统计量。

例1 N ( μ 0 , σ 2 ) N(\mu_0,\sigma^2) N(μ0,σ2)为总体,则 ∑ i = 1 n ( X i − μ 0 ) 2 \sum_{i=1}^n (X_i-\mu_0)^2 i=1n(Xiμ0)2 σ 2 \sigma^2 σ2的最小充分统计量, X 1 − μ 0 X 2 − μ 0 \frac{X_1-\mu_0}{X_2-\mu_0} X2μ0X1μ0是一个辅助统计量,显然这个辅助统计量与最小充分统计量并不独立,因此 ∑ i = 1 n ( X i − μ 0 ) 2 \sum_{i=1}^n (X_i-\mu_0)^2 i=1n(Xiμ0)2不是完备统计量,也就不是 σ 2 \sigma^2 σ2唯一的UMVUE,比如 ∑ i = 1 n X i 2 − n μ 0 2 \sum_{i=1}^n X_i^2 - n\mu_0^2 i=1nXi2nμ02就是另一个UMVUE。

例2 U ( θ − 1 / 2 , θ + 1 / 2 ) U(\theta-1/2,\theta+1/2) U(θ1/2,θ+1/2)为总体, ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)}) (X(1),X(n))是最小充分统计量,但 X ( n ) − X ( 1 ) X_{(n)}-X_{(1)} X(n)X(1)是辅助统计量,因此 ( X ( 1 ) , X ( n ) ) (X_{(1)},X_{(n)}) (X(1),X(n))不完备。

相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页